952 resultados para Type Iii Restriction-modification System
Resumo:
The hsd genes of Mycoplasma pulmonis encode restriction and modification enzymes exhibiting a high degree of sequence similarity to the type I enzymes of enteric bacteria. The S subunits of type I systems dictate the DNA sequence specificity of the holoenzyme and are required for both the restriction and the modification reactions. The M. pulmonis chromosome has two hsd loci, both of which contain two hsdS genes each and are complex, site-specific DNA inversion systems. Embedded within the coding region of each hsdS gene are a minimum of three sites at which DNA inversions occur to generate extensive amino acid sequence variations in the predicted S subunits. We show that the polymorphic hsdS genes produced by gene rearrangement encode a family of functional S subunits with differing DNA sequence specificities. In addition to creating polymorphisms in hsdS sequences, DNA inversions regulate the phase-variable production of restriction activity because the other genes required for restriction activity (hsdR and hsdM) are expressed only from loci that are oriented appropriately in the chromosome relative to the hsd promoter. These data cast doubt on the prevailing paradigms that restriction systems are either selfish or function to confer protection from invasion by foreign DNA.
Resumo:
The nervous system maintains a delicate balance between excitation and inhibition, partly through the complex interplay between voltage-gated sodium and potassium ion channels. Because K+ channel blockade or gene deletion causes hyperexcitability, it is generally assumed that increases in K+ channel gene expression should reduce neuronal network excitability. We have tested this hypothesis by creating a transgenic mouse that expresses a Shaker-type K+ channel gene. Paradoxically, we find that addition of the extra K+ channel gene results in a hyperexcitable rather than a hypoexcitable phenotype. The presence of the transgene leads to a complex deregulation of endogenous Shaker genes in the adult central nervous system as well as an increase in network excitability that includes spontaneous cortical spike and wave discharges and a lower threshold for epileptiform bursting in isolated hippocampal slices. These data suggest that an increase in K+ channel gene dosage leads to dysregulation of normal K+ channel gene expression, and it may underlie a mechanism contributing to the pathogenesis of human aneuploidies such as Down syndrome.
Resumo:
The specificity of the yeast proprotein-processing Kex2 protease was examined in vivo by using a sensitive, quantitative assay. A truncated prepro-α-factor gene encoding an α-factor precursor with a single α-factor repeat was constructed with restriction sites for cassette mutagenesis flanking the single Kex2 cleavage site (-SLDKR↓EAEA-). All of the 19 substitutions for the Lys (P2) residue in the cleavage site were made. The wild-type and mutant precursors were expressed in a yeast strain lacking the chromosomal genes encoding Kex2 and prepro-α-factor. Cleavage of the 20 sites by Kex2, expressed at the wild-type level, was assessed by using a quantitative-mating assay with an effective range greater than six orders of magnitude. All substitutions for Lys at P2 decreased mating, from 2-fold for Arg to >106-fold for Trp. Eviction of the Kex2-encoding plasmid indicated that cleavage of mutant sites by other cellular proteases was not a complicating factor. Mating efficiencies of strains expressing the mutant precursors correlated well with the specificity (kcat/KM) of purified Kex2 for comparable model peptide substrates, validating the in vivo approach as a quantitative method. The results support the conclusion that KM, which is heavily influenced by the nature of the P2 residue, is a major determinant of cleavage efficiency in vivo. P2 preference followed the rank order: Lys > Arg > Thr > Pro > Glu > Ile > Ser > Ala > Asn > Val > Cys > AsP > Gln > Gly > His > Met > Leu > Tyr > Phe > Trp.
Resumo:
In the “selective” cholesteryl ester (CE) uptake process, surface-associated lipoproteins [high density lipoprotein (HDL) and low density lipoprotein] are trapped in the space formed between closely apposed surface microvilli (microvillar channels) in hormone-stimulated steroidogenic cells. This is the same location where an HDL receptor (SR-BI) is found. In the current study, we sought to understand the relationship between SR-BI and selective CE uptake in a heterologous insect cell system. Sf9 (Spodoptera frugiperda) cells overexpressing recombinant SR-BI were examined for (i) SR-BI protein by Western blot analysis and light or electron immunomicroscopy, and (ii) selective lipoprotein CE uptake by the use of radiolabeled or fluorescent (BODIPY-CE)-labeled HDL. Noninfected or infected control Sf9 cells do not express SR-BI, show microvillar channels, or internalize CEs. An unexpected finding was the induction of a complex channel system in Sf9 cells expressing SR-BI. SR-BI-expressing cells showed many cell surface double-membraned channels, immunogold SR-BI, apolipoprotein (HDL) labeling of the channels, and high levels of selective HDL-CE uptake. Thus, double-membraned channels can be induced by expression of recombinant SR-BI in a heterologous system, and these specialized structures facilitate both the binding of HDL and selective HDL-CE uptake.
Resumo:
N-type voltage-dependent Ca2+ channels (VDCCs), predominantly localized in the nervous system, have been considered to play an essential role in a variety of neuronal functions, including neurotransmitter release at sympathetic nerve terminals. As a direct approach to elucidating the physiological significance of N-type VDCCs, we have generated mice genetically deficient in the α1B subunit (Cav 2.2). The α1B-deficient null mice, surprisingly, have a normal life span and are free from apparent behavioral defects. A complete and selective elimination of N-type currents, sensitive to ω-conotoxin GVIA, was observed without significant changes in the activity of other VDCC types in neuronal preparations of mutant mice. The baroreflex response, mediated by the sympathetic nervous system, was markedly reduced after bilateral carotid occlusion. In isolated left atria prepared from N-type-deficient mice, the positive inotropic responses to electrical sympathetic neuronal stimulation were dramatically decreased compared with those of normal mice. In contrast, parasympathetic nervous activity in the mutant mice was nearly identical to that of wild-type mice. Interestingly, the mutant mice showed sustained elevation of heart rate and blood pressure. These results provide direct evidence that N-type VDCCs are indispensable for the function of the sympathetic nervous system in circulatory regulation and indicate that N-type VDCC-deficient mice will be a useful model for studying disorders attributable to sympathetic nerve dysfunction.
Resumo:
We have studied the HA1 domain of 254 human influenza A(H3N2) virus genes for clues that might help identify characteristics of hemagglutinins (HAs) of circulating strains that are predictive of that strain’s epidemic potential. Our preliminary findings include the following. (i) The most parsimonious tree found requires 1,260 substitutions of which 712 are silent and 548 are replacement substitutions. (ii) The HA1 portion of the HA gene is evolving at a rate of 5.7 nucleotide substitutions/year or 5.7 × 10−3 substitutions/site per year. (iii) The replacement substitutions are distributed randomly across the three positions of the codon when allowance is made for the number of ways each codon can change the encoded amino acid. (iv) The replacement substitutions are not distributed randomly over the branches of the tree, there being 2.2 times more changes per tip branch than for non-tip branches. This result is independent of how the virus was amplified (egg grown or kidney cell grown) prior to sequencing or if sequencing was carried out directly on the original clinical specimen by PCR. (v) These excess changes on the tip branches are probably the result of a bias in the choice of strains to sequence and the detection of deleterious mutations that had not yet been removed by negative selection. (vi) There are six hypervariable codons accumulating replacement substitutions at an average rate that is 7.2 times that of the other varied codons. (vii) The number of variable codons in the trunk branches (the winners of the competitive race against the immune system) is 47 ± 5, significantly fewer than in the twigs (90 ± 7), which in turn is significantly fewer variable codons than in tip branches (175 ± 8). (viii) A minimum of one of every 12 branches has nodes at opposite ends representing viruses that reside on different continents. This is, however, no more than would be expected if one were to randomly reassign the continent of origin of the isolates. (ix) Of 99 codons with at least four mutations, 31 have ratios of non-silent to silent changes with probabilities less than 0.05 of occurring by chance, and 14 of those have probabilities <0.005. These observations strongly support positive Darwinian selection. We suggest that the small number of variable positions along the successful trunk lineage, together with knowledge of the codons that have shown positive selection, may provide clues that permit an improved prediction of which strains will cause epidemics and therefore should be used for vaccine production.
Resumo:
Cardiac hypertrophy is associated with altered expression of the components of the cardiac renin-angiotensin system (RAS). While in vitro data suggest that local mechanical stimuli serve as important regulatory modulators of cardiac RAS activity, no in vivo studies have so far corroborated these observations. The aims of this study were to (i) examine the respective influence of local, mechanical versus systemic, soluble factors on the modulation of cardiac RAS gene expression in vivo; (ii) measure gene expression of all known components of the RAS simultaneously; and (iii) establish sequence information and an assay system for the RAS of the dog, one of the most important model organisms in cardiovascular research. We therefore examined a canine model of right ventricular hypertrophy and failure (RVHF) in which the right ventricle (RV) is hemodynamically loaded, the left ventricle (LV) is hemodynamically unloaded, while both are exposed to the same circulating milieu of soluble factors. Using specific competitive PCR assays, we found that RVHF was associated with significant increases in RV mRNA levels of angiotensin converting enzyme and angiotensin II type 2 receptor, and with significant decreases of RV expression of chymase and the angiotensin II type 1 receptor, while RV angiotensinogen and renin remained unchanged. All components remained unchanged in the LV. We conclude that (i) dissociated regional regulation of RAS components in RV and LV indicates modulation by local, mechanical, not soluble, systemic stimuli; (ii) components of the cardiac RAS are independently and differentially regulated; and (iii) opposite changes in the expression of angiotensin converting enzyme and chymase, and of angiotensin II type I and angiotensin II type 2 receptors, may indicate different physiological roles of these RAS components in RVHF.
Resumo:
Context. There is growing evidence that a treatment of binarity amongst OB stars is essential for a full theory of stellar evolution. However the binary properties of massive stars – frequency, mass ratio & orbital separation – are still poorly constrained. Aims. In order to address this shortcoming we have undertaken a multiepoch spectroscopic study of the stellar population of the young massive cluster Westerlund 1. In this paper we present an investigation into the nature of the dusty Wolf-Rayet star and candidate binary W239. Methods. To accomplish this we have utilised our spectroscopic data in conjunction with multi-year optical and near-IR photometric observations in order to search for binary signatures. Comparison of these data to synthetic non-LTE model atmosphere spectra were used to derive the fundamental properties of the WC9 primary. Results. We found W239 to have an orbital period of only ~5.05 days, making it one of the most compact WC binaries yet identified. Analysis of the long term near-IR lightcurve reveals a significant flare between 2004-6. We interpret this as evidence for a third massive stellar component in the system in a long period (>6 yr), eccentric orbit, with dust production occuring at periastron leading to the flare. The presence of a near-IR excess characteristic of hot (~1300 K) dust at every epoch is consistent with the expectation that the subset of persistent dust forming WC stars are short (<1 yr) period binaries, although confirmation will require further observations. Non-LTE model atmosphere analysis of the spectrum reveals the physical properties of the WC9 component to be fully consistent with other Galactic examples. Conclusions. The simultaneous presence of both short period Wolf-Rayet binaries and cool hypergiants within Wd 1 provides compelling evidence for a bifurcation in the post-Main Sequence evolution of massive stars due to binarity. Short period O+OB binaries will evolve directly to the Wolf-Rayet phase, either due to an episode of binary mediated mass loss – likely via case A mass transfer or a contact configuration – or via chemically homogenous evolution. Conversely, long period binaries and single stars will instead undergo a red loop across the HR diagram via a cool hypergiant phase. Future analysis of the full spectroscopic dataset for Wd 1 will constrain the proportion of massive stars experiencing each pathway; hence quantifying the importance of binarity in massive stellar evolution up to and beyond supernova and the resultant production of relativistic remnants.
Resumo:
Background: The harmonization of European health systems brings with it a need for tools to allow the standardized collection of information about medical care. A common coding system and standards for the description of services are needed to allow local data to be incorporated into evidence-informed policy, and to permit equity and mobility to be assessed. The aim of this project has been to design such a classification and a related tool for the coding of services for Long Term Care (DESDE-LTC), based on the European Service Mapping Schedule (ESMS). Methods: The development of DESDE-LTC followed an iterative process using nominal groups in 6 European countries. 54 researchers and stakeholders in health and social services contributed to this process. In order to classify services, we use the minimal organization unit or “Basic Stable Input of Care” (BSIC), coded by its principal function or “Main Type of Care” (MTC). The evaluation of the tool included an analysis of feasibility, consistency, ontology, inter-rater reliability, Boolean Factor Analysis, and a preliminary impact analysis (screening, scoping and appraisal). Results: DESDE-LTC includes an alpha-numerical coding system, a glossary and an assessment instrument for mapping and counting LTC. It shows high feasibility, consistency, inter-rater reliability and face, content and construct validity. DESDE-LTC is ontologically consistent. It is regarded by experts as useful and relevant for evidence-informed decision making. Conclusion: DESDE-LTC contributes to establishing a common terminology, taxonomy and coding of LTC services in a European context, and a standard procedure for data collection and international comparison.
Resumo:
Context. It appears that most (if not all) massive stars are born in multiple systems. At the same time, the most massive binaries are hard to find owing to their low numbers throughout the Galaxy and the implied large distances and extinctions. Aims. We want to study LS III +46 11, identified in this paper as a very massive binary; another nearby massive system, LS III +46 12; and the surrounding stellar cluster, Berkeley 90. Methods. Most of the data used in this paper are multi-epoch high S/N optical spectra, although we also use Lucky Imaging and archival photometry. The spectra are reduced with dedicated pipelines and processed with our own software, such as a spectroscopic-orbit code, CHORIZOS, and MGB. Results. LS III +46 11 is identified as a new very early O-type spectroscopic binary [O3.5 If* + O3.5 If*] and LS III +46 12 as another early O-type system [O4.5 V((f))]. We measure a 97.2-day period for LS III +46 11 and derive minimum masses of 38.80 ± 0.83 M⊙ and 35.60 ± 0.77 M⊙ for its two stars. We measure the extinction to both stars, estimate the distance, search for optical companions, and study the surrounding cluster. In doing so, a variable extinction is found as well as discrepant results for the distance. We discuss possible explanations and suggest that LS III +46 12 may be a hidden binary system where the companion is currently undetected.
Resumo:
Tese de doutoramento, Farmácia (Tecnologia Farmacêutica), Universidade de Lisboa, Faculdade de Farmácia, 2016