845 resultados para Turning voice emotion into graphical movement
Resumo:
A constraints- based framework for understanding processes of movement coordination and control is predicated on a range of theoretical ideas including the work of Bernstein (1967), Gibson (1979), Newell (1986) and Kugler, Kelso & Turvey (1982). Contrary to a normative perspective that focuses on the production of idealized movement patterns to be acquired by children during development and learning (see Alain & Brisson, 1986), this approach formulates the emergence of movement co- ordination as a function of the constraints imposed upon each individual. In this framework, cognitive, perceptual and movement difficulties and disorders are considered to be constraints on the perceptual- motor system, and children’s movements are viewed as emergent functional adaptations to these constraints (Davids et al., 2008; Rosengren, Savelsbergh & van der Kamp, 2003). From this perspective, variability of movement behaviour is not viewed as noise or error to be eradicated during development, but rather, as essentially functional in facilitating the child to satisfy the unique constraints which impinge on his/her developing perceptual- motor and cognitive systems in everyday life (Davids et al., 2008). Recently, it has been reported that functional neurobiological variability is predicated on system degeneracy, an inherent feature of neurobiological systems which facilitates the achievement of task performance goals in a variety of different ways (Glazier & Davids, 2009). Degeneracy refers to the capacity of structurally different components of complex movement systems to achieve different performance outcomes in varying contexts (Tononi et al., 1999; Edelman & Gally, 2001). System degeneracy allows individuals with and without movement disorders to achieve their movement goals by harnessing movement variability during performance. Based on this idea, perceptual- motor disorders can be simply viewed as unique structural and functional system constraints which individuals have to satisfy in interactions with their environments. The aim of this chapter is to elucidate how the interaction of structural and functional organismic, and environmental constraints can be harnessed in a nonlinear pedagogy by individuals with movement disorders.
Resumo:
This is a deliberately contentious paper about the future of the socio-political sphere in the West based on what we know about its past. I argue that the predominant public discourse in Western countries is best characterised as one of selective forgetfulness; a semi-blissful, amnesiacal state of collective dementia that manifests itself in symbolic idealism: informationalism. Informationalism is merely the latest form of idealism. It is a lot like religion insofar as it causally relates abstract concepts with reality and, consequently, becomes confused between the two. Historically, this has proven to be a dangerous state of affairs, especially when elites becomes confused between ideas about how a society should work, and the way it actually does work. Central to the idealism of the information age, at least in intellectual spheres, is the so called "problem of the subject". I argue that the "problem of the subject" is a largely synthetic, destabilising, and ultimately fruitless theoretical abstraction which turns on a synthetically derived, generalised intradiscursive space; existentialist nihilism; and the theoretical baubles of ontological metaphysics. These philosophical aberrations are, in turn, historically concomitant with especially destructive political and social configurations. This paper sketches a theoretical framework for identity formation which rejects the problem of the subject, and proposes potential resources, sources, and strategies with which to engage the idealism that underpins this obfuscating problematic in an age of turbulent social uncertainty. Quite simply, I turn to history as the source of human identity. While informationalism, like religion, is mostly focused on utopian futures, I assert that history, not the future, holds the solutions for substantive problematics concerning individual and social identities. I argue here that history, language, thought, and identity are indissolubly entangled and so should be understood as such: they are the fundamental parts of 'identities in action'. From this perspective, the ‘problem of the subject’ becomes less a substantive intellectual problematic and more a theoretical red herring.
Resumo:
Many luxury heritage brands operate on the misconception that heritage is interchangeable with history rather than representative of the emotional response they originally developed in their customer. This idea of heritage as static history inhibits innovation, prevents dynamic renewal and impedes their ability to redefine, strengthen and position their brand in current and emerging marketplaces. This paper examines a number of heritage luxury brands that have successfully identified the original emotional responses they developed in their customers and, through innovative approaches in design, marketing, branding and distribution evoke these responses in contemporary consumers. Using heritage and innovation hand-in-hand, these brands have continued to grow and develop a vision of heritage that incorporates both historical and contemporary ideas to meet emerging customer needs. While what constitutes a ‘luxury’ item is constantly challenged in this era of accessible luxury products, up scaling and aspirational spending, this paper sees consumers’ emotional needs as the key element in defining the concept of luxury. These emotional qualities consistently remain relevant due to their ability to enhance a positive sense of identity for the brand user. Luxury is about the ‘experience’ not just the product providing the consumer with a sense of enhanced status or identity through invoked feelings of exclusivity, authenticity, quality, uniqueness and culture. This paper will analyse luxury heritage brands that have successfully combined these emotional values with those of their ‘heritage’ to create an aura of authenticity and nostalgia that appeals to contemporary consumers. Like luxury, the line where clothing becomes fashion is blurred in the contemporary fashion industry; however, consumer emotion again plays an important role. For example, clothing becomes ‘fashion’ for consumers when it affects their self perception rather than fulfilling basic functions of shelter and protection. Successful luxury heritage brands can enhance consumers’ sense of self by involving them in the ‘experience’ and ‘personality’ of the brand so they see it as a reflection of their own exclusiveness, authentic uniqueness, belonging and cultural value. Innovation is a valuable tool for heritage luxury brands to successfully generate these desired emotional responses and meet the evolving needs of contemporary consumers. While traditionally fashion has been a monologue from brand to consumer, new technology has given consumers a voice to engage brands in a conversation to express their evolving needs, ideas and feedback. As a result, in this consumer-empowered era of information sharing, this paper defines innovation as the ability of heritage luxury brands to develop new design and branding strategies in response to this consumer feedback while retaining the emotional core values of their heritage. This paper analyses how luxury heritage brands can effectively position themselves in the contemporary marketplace by separating heritage from history to incorporate innovative strategies that will appeal to consumer needs of today and tomorrow.
Resumo:
In this paper, I focus on the growing "nonsense industry" which is most apparent in the writing typical of business, government departments, and the financial press. This writing, like technical writing, is characterised by heavy reliance on grammatical metaphor. It endows shibboleths - for instance, "globalisation"; "efficiencies"; "competition"; "modernisation"; "consumer sentiment"; "reform"; and so on - with anthropomorphic qualities. These anthropomorphic artefacts of technocratised language are then presented as having immutable powers over people. Thus they become banal public excuses for negligent practices in both business and government.
Resumo:
Facial expression is an important channel for human communication and can be applied in many real applications. One critical step for facial expression recognition (FER) is to accurately extract emotional features. Current approaches on FER in static images have not fully considered and utilized the features of facial element and muscle movements, which represent static and dynamic, as well as geometric and appearance characteristics of facial expressions. This paper proposes an approach to solve this limitation using ‘salient’ distance features, which are obtained by extracting patch-based 3D Gabor features, selecting the ‘salient’ patches, and performing patch matching operations. The experimental results demonstrate high correct recognition rate (CRR), significant performance improvements due to the consideration of facial element and muscle movements, promising results under face registration errors, and fast processing time. The comparison with the state-of-the-art performance confirms that the proposed approach achieves the highest CRR on the JAFFE database and is among the top performers on the Cohn-Kanade (CK) database.
Resumo:
A forced landing is an unscheduled event in flight requiring an emergency landing, and is most commonly attributed to engine failure, failure of avionics or adverse weather. Since the ability to conduct a successful forced landing is the primary indicator for safety in the aviation industry, automating this capability for unmanned aerial vehicles (UAVs) will help facilitate their integration into, and subsequent routine operations over civilian airspace. Currently, there is no commercial system available to perform this task; however, a team at the Australian Research Centre for Aerospace Automation (ARCAA) is working towards developing such an automated forced landing system. This system, codenamed Flight Guardian, will operate onboard the aircraft and use machine vision for site identification, artificial intelligence for data assessment and evaluation, and path planning, guidance and control techniques to actualize the landing. This thesis focuses on research specific to the third category, and presents the design, testing and evaluation of a Trajectory Generation and Guidance System (TGGS) that navigates the aircraft to land at a chosen site, following an engine failure. Firstly, two algorithms are developed that adapts manned aircraft forced landing techniques to suit the UAV planning problem. Algorithm 1 allows the UAV to select a route (from a library) based on a fixed glide range and the ambient wind conditions, while Algorithm 2 uses a series of adjustable waypoints to cater for changing winds. A comparison of both algorithms in over 200 simulated forced landings found that using Algorithm 2, twice as many landings were within the designated area, with an average lateral miss distance of 200 m at the aimpoint. These results present a baseline for further refinements to the planning algorithms. A significant contribution is seen in the design of the 3-D Dubins Curves planning algorithm, which extends the elementary concepts underlying 2-D Dubins paths to account for powerless flight in three dimensions. This has also resulted in the development of new methods in testing for path traversability, in losing excess altitude, and in the actual path formation to ensure aircraft stability. Simulations using this algorithm have demonstrated lateral and vertical miss distances of under 20 m at the approach point, in wind speeds of up to 9 m/s. This is greater than a tenfold improvement on Algorithm 2 and emulates the performance of manned, powered aircraft. The lateral guidance algorithm originally developed by Park, Deyst, and How (2007) is enhanced to include wind information in the guidance logic. A simple assumption is also made that reduces the complexity of the algorithm in following a circular path, yet without sacrificing performance. Finally, a specific method of supplying the correct turning direction is also used. Simulations have shown that this new algorithm, named the Enhanced Nonlinear Guidance (ENG) algorithm, performs much better in changing winds, with cross-track errors at the approach point within 2 m, compared to over 10 m using Park's algorithm. A fourth contribution is made in designing the Flight Path Following Guidance (FPFG) algorithm, which uses path angle calculations and the MacCready theory to determine the optimal speed to fly in winds. This algorithm also uses proportional integral- derivative (PID) gain schedules to finely tune the tracking accuracies, and has demonstrated in simulation vertical miss distances of under 2 m in changing winds. A fifth contribution is made in designing the Modified Proportional Navigation (MPN) algorithm, which uses principles from proportional navigation and the ENG algorithm, as well as methods specifically its own, to calculate the required pitch to fly. This algorithm is robust to wind changes, and is easily adaptable to any aircraft type. Tracking accuracies obtained with this algorithm are also comparable to those obtained using the FPFG algorithm. For all three preceding guidance algorithms, a novel method utilising the geometric and time relationship between aircraft and path is also employed to ensure that the aircraft is still able to track the desired path to completion in strong winds, while remaining stabilised. Finally, a derived contribution is made in modifying the 3-D Dubins Curves algorithm to suit helicopter flight dynamics. This modification allows a helicopter to autonomously track both stationary and moving targets in flight, and is highly advantageous for applications such as traffic surveillance, police pursuit, security or payload delivery. Each of these achievements serves to enhance the on-board autonomy and safety of a UAV, which in turn will help facilitate the integration of UAVs into civilian airspace for a wider appreciation of the good that they can provide. The automated UAV forced landing planning and guidance strategies presented in this thesis will allow the progression of this technology from the design and developmental stages, through to a prototype system that can demonstrate its effectiveness to the UAV research and operations community.
Resumo:
Spontaneous facial expressions differ from posed ones in appearance, timing and accompanying head movements. Still images cannot provide timing or head movement information directly. However, indirectly the distances between key points on a face extracted from a still image using active shape models can capture some movement and pose changes. This information is superposed on information about non-rigid facial movement that is also part of the expression. Does geometric information improve the discrimination between spontaneous and posed facial expressions arising from discrete emotions? We investigate the performance of a machine vision system for discrimination between posed and spontaneous versions of six basic emotions that uses SIFT appearance based features and FAP geometric features. Experimental results on the NVIE database demonstrate that fusion of geometric information leads only to marginal improvement over appearance features. Using fusion features, surprise is the easiest emotion (83.4% accuracy) to be distinguished, while disgust is the most difficult (76.1%). Our results find different important facial regions between discriminating posed versus spontaneous version of one emotion and classifying the same emotion versus other emotions. The distribution of the selected SIFT features shows that mouth is more important for sadness, while nose is more important for surprise, however, both the nose and mouth are important for disgust, fear, and happiness. Eyebrows, eyes, nose and mouth are important for anger.
Resumo:
In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.