950 resultados para Tunable vibrations absorber
Resumo:
Incluye Bibliografía
Resumo:
Here, a simplified dynamical model of a magnetically levitated body is considered. The origin of an inertial Cartesian reference frame is set at the pivot point of the pendulum on the levitated body in its static equilibrium state (ie, the gap between the magnet on the base and the magnet on the body, in this state). The governing equations of motion has been derived and the characteristic feature of the strategy is the exploitation of the nonlinear effect of the inertial force associated, with the motion of a pendulum-type vibration absorber driven, by an appropriate control torque [4]. In the present paper, we analyzed the nonlinear dynamics of problem, discussed the energy transfer between the main system and the pendulum in time, and developed State Dependent Riccati Equation (SDRE) control design to reducing the unstable oscillatory movement of the magnetically levitated body to a stable fixed point. The simulations results showed the effectiveness of the (SDRE) control design. Copyright © 2011 by ASME.
Resumo:
We investigate the nonlinear oscillations in a free surface of a fluid in a cylinder tank excited by non-ideal power source, an electric motor with limited power supply. We study the possibility of parametric resonance in this system, showing that the excitation mechanism can generate chaotic response. Additionally, the dynamics of parametrically excited surface waves in the tank can reveal new characteristics of the system. The fluid-dynamic system is modeled in such way as to obtain a nonlinear differential equation system. Numerical experiments are carried out to find the regions of chaotic solutions. Simulation results are presented as phase-portrait diagrams characterizing the resonant vibrations of free fluid surface and the existence of several types of regular and chaotic attractors. We also describe the energy transfer in the interaction process between the hydrodynamic system and the electric motor. Copyright © 2011 by ASME.
Resumo:
Incluye Bibliografía
Resumo:
Documento disponible en inglés (565.03)
Resumo:
A major UK initiative, entitled 'Mapping the Underworld', is seeking to address the serious social, environmental and economic consequences arising from an inability to locate the buried utility service infrastructure without resorting to extensive excavations. Mapping the Underworld aims to develop and prove the efficacy of a multi-sensor device for accurate remote buried utility service detection, location and, where possible, identification. One of the technologies to be incorporated in the device is low-frequency vibro-acoustics, and the application of this technology for detecting buried infrastructure is currently being investigated. Here, a shear wave ground vibration technique for detecting buried pipes is described. For this technique, shear waves are generated at the ground surface, and the resulting ground surface vibrations measured, using geophones, along a line traversing the anticipated run of the pipe. Measurements were made at a test site with a single pressurized polyethylene mains water pipe. Time-extended signals were employed to generate the illuminating wave. Cross-correlation functions between the measured ground velocities and a reference measurement adjacent to the excitation were then calculated and summed using a stacking method to generate a cross-sectional image of the ground. The wide cross-correlation peaks caused by high ground attenuation were partially compensated for by using a generalized cross-correlation function called the smoothed coherence transform. To mitigate the effects of other potential sources of vibration in the vicinity, the excitation signal was used as an additional reference when calculating the generalized cross-correlation functions. For two out of three tests, the pipe was detected, indicating that this technique will be a valuable addition to the Mapping the Underworld armoury.
Resumo:
Includes bibliography
Resumo:
In this paper, we deal with the research of a proposed mathematical model of energy harvesting, including nonlinearities in the piezoelectric coupling and a non-ideal force of excitation. We showed using numerical simulations to analysis of the dynamic responses that, the power harvested was influenced by the nonlinear vibrations of the structure, as well as by the influence of the non-linearities in the piezoelectric coupling. We concluded through of the numerical results that the limited energy source was interacting with the system. Thus, the increasing of the voltage in DC motor led the system produce a good power response, especially in high-energy orbits in the resonance region, but the Sommerfeld effect occurs in the system and a chaotic behavior was found in the post-resonance region. So the power harvested along the time decreases because occurs loses of energy due the interaction between energy source and structure. Keeping the energy harvested constant over time is essential to make possible the use of energy harvesting systems in real applications. To achieve this objective, we applied a control technique in order to stabilize the chaotic system in a periodic stable orbit. We announced that the results were satisfactory and the control maintained the system in a stable condition. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
In this paper the dynamics of the ideal and non-ideal Duffing oscillator with chaotic behavior is considered. In order to suppress the chaotic behavior and to control the system, a control signal is introduced in the system dynamics. The control strategy involves the application of two control signals, a nonlinear feedforward control to maintain the controlled system in a periodic orbit, obtained by the harmonic balance method, and a state feedback control, obtained by the state dependent Riccati equation, to bring the system trajectory into the desired periodic orbit. Additionally, the control strategy includes an active magnetorheological damper to actuate on the system. The control force of the damper is a function of the electric current applied in the coil of the damper, that is based on the force given by the controller and on the velocity of the damper piston displacement. Numerical simulations demonstrate the effectiveness of the control strategy in leading the system from any initial condition to a desired orbit, and considering the mathematical model of the damper (MR), it was possible to control the force of the shock absorber (MR), by controlling the applied electric current in the coils of the damper. © 2012 Foundation for Scientific Research and Technological Innovation.
Resumo:
Incluye Bibliografía
Resumo:
Lead molybdate (PbMoO4) crystals were synthesized by the co-precipitation method at room temperature and then processed in a conventional hydrothermal (CH) system at low temperature (70 °C for different times). These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, micro-Raman (MR) and Fourier transformed infrared (FT-IR) spectroscopies. Field emission scanning electron microscopy images were employed to observe the shape and monitor the crystal growth process. The optical properties were investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) measurements. XRD patterns and MR spectra indicate that these crystals have a scheelite-type tetragonal structure. Rietveld refinement data possibilities the evaluation of distortions in the tetrahedral [MoO 4] clusters. MR and FT-IR spectra exhibited a high mode ν1(Ag) ascribed to symmetric stretching vibrations as well as a large absorption band with two modes ν3(Eu and Au) related to anti-symmetric stretching vibrations in [MoO 4] clusters. Growth mechanisms were proposed to explain the stages involved for the formation of octahedron-like PbMoO4 crystals. UV-Vis absorption spectra indicate a reduction in optical band gap with an increase in the CH processing time. PL properties of PbMoO4 crystals have been elucidated using a model based on distortions of tetrahedral [MoO4] clusters due to medium-range intrinsic defects and intermediary energy levels (deep and shallow holes) within the band gap. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
Incluye Bibliografía
Resumo:
Torsional vibration predictions and measurements of a marine propulsion system, which has both damping and a highly flexible coupling, are presented in this paper. Using the conventional approach to stress prediction in the shafting system, the numerical predictions and the experimental torsional vibration stress curves in some parts of the shafting system are found to be quite different. The free torsional vibration characteristics and forced torsional vibration response of the system are analyzed in detail to investigate this phenomenon. It is found that the second to fourth natural modes of the shafting system have significant local deformation. This results in large torsional resonant responses in different sections of the system corresponding to different engine speeds. The results show that when there is significant local deformation in the shafting system for different modes, then multi-point measurements should be made, rather than the conventional method of using a single measurement at the free end of the shaft, to obtain the full torsional vibration characteristics of the shafting system.
Resumo:
The objective was to evaluate the internal quality of white-shelled consume eggs, sanitized or not, stored under different packaging conditions at room temperature. It was used 300 eggs, distributed in a completely randomized experimental design in a 3×2×4+1 factorial arrangement, three packaging conditions (PVC film, partial vacuum, partial vacuum with oxygen gas absorber), storage period (7, 14, 21 and 28 days), sanitized or not, and control (fresh eggs), with four repetitions. At the end of each period the analysis were performed. Partial vacuum condition was able to maintained Haugh unit, and promoted the best results for yolk index. The weight maintenance was better when packaged under vacuum, with or without O2 sachets absorbers. Lower values of water activity were obtained in eggs packed in PVC film, and when the sanitation was performed. It can be concluded that the internal egg quality decreases with storage time sharper in the eggs packed in PVC film, because vacuum has preserved some features of them. With sanitation, the storage conditions of eggs in PVC film should be improved because its internal quality decrease was greatest.
Resumo:
In this paper we study the behavior of a structure vulnerable to excessive vibrations caused by an non-ideal power source. To perform this study, the mathematical model is proposed, derive the equations of motion for a simple plane frame excited by an unbalanced rotating machine with limited power (non-ideal motor). The non-linear and non-ideal dynamics in system is demonstrated with a chaotic behavior. We use a State-Dependent Riccati Equation Control technique for regulate the chaotic behavior, in order to obtain a periodic orbit small and to decrease its amplitude. The simulation results show the identification by State-Dependent Riccati Equation Control is very effective. © 2013 Academic Publications, Ltd.