999 resultados para Tunable luminescence


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Article Outline
• Introduction
• Photoluminescence
• General Principles
• Structural and Environmental Influences on Photoluminescence
• The Relationship between Photoluminescence Intensity and Analyte Concentration
• Excitation and Emission Spectra
• Chemiluminescence
• Bioluminescence
• Other Types of Luminescence
• Further Reading

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Sr2Mg(B03)2 doped with Eu was synthesized respectively in air and weak reducing atmosphere (combustion of carbon particle), whose photoluminescence characteristics and structure were also studied at room-temperature. In air, the fluorescent body's color was white for different synthesized temperatures. At room temperature, the sample was excited and showed red typical emission spectrum of Eu3+ whose emission apex were sharp near 612 nm and emission spect~m was made up of the charge transformation band (CTB) of Eu3 + and excitation spectrum of 4f→4f high energy level transition, then reached the area of VUV. However, under reducing atmosphere (combustion of carbon particles), the color of the sample yielded was yellow, whose color became deeper with increasing temperature and showed phase transition. Using UV excitation, the luminescence of yellow sample was very weak. In a complicated broad spectrum at visible light area, the red emission spectrum of Eu2+ was not observed. Crystal structure and luminescence of the sample were completely different from the results of Diaz and Keszler. Two samples were prepared under oxidation and reducing atmosphere at high temperature, which were different on crystal structure and microstructure. By studying Sr2Mg(B03)2:Eu3+ a series of directional faults or educts were found, because Eu3 + ions substituted for Sr2 + ions. However, microstructure of Sr2Mg(B03 )2: Eu2 + is more complicated, whose excitation spectrum might be excited by Eu2 +. By XRD patten of the samples, phase transitibn could be found. Twins and clusters that were formed from point defect such as interstitial atom and big angle crystal boundary could be found by TEM.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Monodispersed SiO2-shell/ZnO-core composite nanospheres have been prepared in an oil-in-water microemulsion system. By using cyclohexane as the oil phase and Triton X-100 as the surfactant, composite nanospheres with high core loading levels and tunable shell thickness were obtained. Utilization of PVP capping agent on ZnO allowed the synthesis of composite nanospheres without forming any coreless SiO2 spheres or shell-less ZnO particles. The photoactivity of ZnO nanoparticles was greatly reduced by SiO2-coating, which enables their applications as durable, safe, and nonreactive UV blockers in plastics, coating, and other products.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have demonstrated that the surface wettability of negatively charged polyimide films could be turned by electrostatic self-assembly of ionic liquids. The water contact angles of the polyimide films varied in the range 27-80 degrees for 13 different ionic liquids based on imidazolium and ammonium salts. The surface morphology of the resulting surfaces was characterized using atomic force microscopy. The results revealed that the assembly of longer-substituent cations was characterized by the formation of spherical nanoparticles that were formed due to sequent aggregation of cations on those electrostatically assembled ones via hydrophobic interaction. In this case, the counteranions are present in the assembled layers and the wettability is accordingly affected. Whereas for shorter-substituent cations, no aggregates were formed due to the less hydrophobic interaction than the electrostatic repulsive interaction between the cations, and the counteranions were absent from the assembled layers. This method can also be utilized to quantify the hydrophobicity of various ionic liquids.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a new architecture for a high quality tunable MEMS filter that can be used in wireless biomedical signal transceivers. It consists of a π match circuit with two shunt capacitive coupling switches separated by a piece of high impedance short transmission line, and also a series switch placed at the quarter wavelength distance away from the π match circuit. The low actuation voltage and also tunability are important features of the design objective. All portions of the filter can be realized simultaneously. Thus, the filter docs not require any extra steps during its fabrication, and is not costly. The simulation results confirm the good performance of the filter.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lasting glow: Under femtosecond laser irradiation, graphene oxide nanoparticles (GONs) give strong two-photon luminescence (TPL; see picture). The presence of GONs also induces microbubbling, which causes cell death at an order of magnitude lower laser power than when cells are not labeled. The results show that GONs can be used for TPL-based imaging and photothermal cancer therapy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have shown that protic ionic liquids, pILs, are effective coagulation solvents for the regenerated of silk fibroin, RSF. We show that the choice of pIL has a dramatic effect on the composition of the RSF. Additionally the use of pILs as the coagulator eliminates the need for volatile organic solvents in silk processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple, high yield, chemical process is developed to fabricate layered h-BN nanosheets and BCNO nanoparticles with a diameter of ca. 5 nm at 700 °C. The use of the eutectic LiCl/KCl salt melt medium enhances the kinetics of the reaction between sodium borohydride and urea or guanidine as well as the dispersion of the nanoparticles in water. The carbon content can be tuned from 0 to 50 mol % by adjusting the reactant ratio, thus providing precise control of the light emission of the particles in the range 440–528 nm while reaching a quantum yield of 26%. Because of their green synthesis, low toxicity, small size, and stability against aggregation in water, the as-obtained photoluminescent BCNO nanoparticles show promise for diagnostics and optoelectronics.