964 resultados para Treatement of industrial waste waters


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The urban solid waste of the city of Indaiatuba (pop. 175 000), located in the state of São Paulo, was characterized, focusing on the recycling potential. For this purpose, collected waste was subdivided into 27 items, classified by mass and volume. About 90% of this waste was found to be potentially recyclable and only 10% requiring landfilling. The compostable organic matter, in the form of food and garden waste, both with high moisture content (51 and 41%, respectively), represents 54% in mass and 21% in volume. The most common type of plastic in this waste is high density polyethylene, whose estimated disposal is about 5000 kg day(-1). A socio-economic analysis of the waste generation indicates that low-income neighbourhoods discard relatively less packaging and more food waste, shoes and construction debris than middle and high income ones, which may be due to low purchasing power and schooling. Our findings indicate that more aluminium and uncoloured polyethylene terephthalate is discarded in the warmest months of the year, probably due to a greater consumption of canned and bottled drinks.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Organic residues may cause major health and environmental problems. This is the case in our study area, where more than 10 billion L per year of residential and industrial waste are produced. Land application of biosolids can be an economical solution by recycling waste and can provide valuable fertilizer if used correctly. The aim of this work was to study the effect of biosolids on the chemical properties of an Oxisol. The experiment was located at Ilha Solteira northwest of São Paulo State, Brazil. The soil was cropped to Sorghum bicolor.The field experimental design consisted of random blocks with six treatments and four replications of each treatment. Biosolids were surface applied to four treatments at rates of 5, 10, 20, and 40 Mg ha(-1) on a dry matter basis; in addition, a treatment with mineral fertilizer and a control were included. One year after biosolids application, soil samples were taken at 0-10, 10-20, and 20-40 cm. Organic matter content (Walkley-Black) and pH (CaCl2) were routinely determined. Cation exchange capacity, exchangeable bases (Ca, Mg, K), and P were determined by exchange resin extraction. No significant differences in any of the analyzed properties were found below the 20 cm depth. Extractable phosphorus (P) and potassium (K) increased with increasing biosolids rate in the top 20 cm, whereas calcium (Ca) and (Ma) magnesium content were not significantly influenced by biosolids. Soil pH decreased with increasing biosolids application. The sewage sludge application did not influence the sorghum production in the first year of culture, under unfavorable soil moisture conditions, but it influenced the dry matter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mutagenic activity of waste material originating from an aluminum products factory was determined by the Salmonella/microsome assay, using the bacterial strains TA100, TA98 and YG1024. The material was obtained by sweeping the factory floor at the end of the work shift. Organic compounds were extracted by ultrasound for 30 min in dichloromethane or 70% ethanol. After evaporation of solvent, these extracts were dissolved in dimethylsulfoxide, and tested for the mutagenic activity at varying concentrations. All the extracts from the factory had mutagenic activity, especially in the YG1024 strain, suggesting the presence of aromatic amines, later confirmed by chemical analysis. The TA98 strain also showed mutagenic activity, though it did not exhibit the highest mutagenicity index observed with the YG1024 strain. In TA100, mutagenic activity was not observed. This study should serve as an alert to management and those who are occupationally exposed, and as a warning that this type of waste should not be discarded in the environment without any control. (C) 2004 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Turquoise blue 15 (AT15) is a reactive dye widely used in the textile industry to color natural fibers. The presence of these dyes in effluent and industrial wastewater is of considerable interest due ecotoxicological and environmental problems. The electrochemical reduction of this dye has been investigated in aqueous solution using cyclic voltammetry, controlled potential electrolysis and cathodic stripping voltammetry. Optimum conditions for dye discoloration by controlled potential electrolysis use an alkaline medium. Using cathodic stripping voltammetry a linear calibration graph was obtained from 5.00×10-8 mol L-1 to 1.00×10 -6 mol L-1 of AT15 at pH 4.0, using accumulation times of 180 and 240 s and an accumulation potential of 0.0 V. The proposed method was applied in direct determination of the dye in tap water and in textile industry effluent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Soil and subsoil pollution is not only significant in terms of environmental loss, but also a matter of environmental and public health. Solid, liquid and gaseous residues are the major soil contamination agents. They originate from urban conglomerates and industrial areas in which it is impossible to emphasize the chemical, petrochemical and textile industry; thermoelectric, mining, and ironmaster activities. The contamination process can thus be defined as a compound addition to soil, from what qualitative and or quantitative manners can modify soil's natural characteristics and use, producing baneful and deteriorative effects on human health. Studies have shown that human exposition to high concentration of some heavy metals found on soil can cause serious health problems, such as pulmonary or kidney complications, liver and nervous system harm, allergy, and the chronic exposition that leads to death. The present study searches for the correlation among soil contamination, done through a geochemical baseline survey of an industrial contamination area on the shoreline of Sao Paulo state. The study will be conducted by spatial analysis using Geographical Information Systems for mapping and regression analysis. The used data are 123 soil samples of percentage concentration of heavy metals. They were sampled and spatially distributed by geostatistics methods. To verify if there is a relation between heavy metals soil pollution and morbidity an executed correlation and regression analysis will be done using the pollution registers as the independent variables and morbidity as dependable variables. It is expected, by the end of the study, to identify the areas relation between heavy metals soil pollution and morbidity, moreover to be able to provide assistance in terms of new methodologies that could facilitate soil pollution control programs and public health planning. © 2010 WIT Press.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Includes bibliography

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The addition of nutrients and/or soil bulking agents is used in bioremediation to increase microbial activity in contaminated soils. For this purpose, some studies have assessed the effectiveness of vinasse in the bioremediation of soils contaminated with petroleum waste. The present study was aimed at investigating the clastogenic/aneugenic potential of landfarming soil from a petroleum refinery before and after addition of sugar cane vinasse using the Allium cepa bioassay. Our results show that the addition of sugar cane vinasse to landfarming soil potentiates the clastogenic effects of the latter probably due the release of metals that were previously adsorbed into the organic matter. These metals may have interacted synergistically with petroleum hydrocarbons present in the landfarming soil treated with sugar cane vinasse. We recommend further tests to monitor the effects of sugar cane vinasse on soils contaminated with organic wastes. © 2012 Springer Science+Business Media B.V.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Reuse of industrial and agricultural wastes as supplementary cementitious materials (SCMs) in concrete and mortar productions contribute to sustainable development. In this context, fluid catalytic cracking catalyst residue (spent FCC), a byproduct from the petroleum industry and petrol refineries, have been studied as SCM in blended Portland cement in the last years. Nevertheless, another environmental friendly alternative has been conducted in order to produce alternative binders with low CO2 emissions. The use of aluminosilicate materials in the production of alkali-activated materials (AAMs) is an ongoing research topic which can present low CO2 emissions associated. Hence, this paper studies some variables that can influence the production of AAM based on spent FCC. Specifically, the influence of SiO 2/Na2O molar ratio and the H2O/spent FCC mass ratio on the mechanical strength and microstructure are assessed. Some instrumental techniques, such as SEM, XRD, pH and electrical conductivity measurements, and MIP are performed in order to assess the microstructure of formed alkali-activated binder. Alkali activated mortars with compressive strength up to 80 MPa can be formed after curing for 3 days at 65°C. The research demonstrates the potential of spent FCC to produce alkali-activated cements and the importance of SiO2/Na2O molar ratio and the H2O/spent FCC mass ratio in optimising properties and microstructure. © 2013 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Aromatic amines are environmental pollutants and represent one of the most important classes of industrial and natural chemicals. Some types of complex effluents containing these chemical species, mainly those originated from chemicals plants are not fully efficiently treated by conventional processes. In this work, the use of electrochemical technology through an electrolytic pilot scale flow reactor is considered for treatment of wastewater of a chemical industry manufacturer of antioxidant and anti-ozonant substances used in rubber. Experimental results showed that was possible to remove between 65% and 95% of apparent colour and chemical oxygen demand removal between 30 and 90% in 60 min of treatment, with energy consumption rate from 26 kWh m-3 to 31 kWh m-3. Absorbance, total organic carbon and toxicity analyses resulted in no formation of toxic by-products. The results suggest that the presented electrochemical process is a suitable method for treating this type of wastewater, mainly when pre-treated by aeration. Copyright © 2013 Inderscience Enterprises Ltd.