949 resultados para Transient Absorption Spectroscopy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The primary cementing is an important step in the oilwell drilling process, ensuring the mechanical stability of the well and the hydraulic isolation between casing and formation. For slurries to meet the requirements for application in a certain well, some care in the project should be taken into account to obtain a cement paste with the proper composition. In most cases, it is necessary to add chemicals to the cement to modify its properties, according to the operation conditions and thus obtain slurries that can move inside the jacket providing a good displacement to the interest area. New technologies of preparation and use of chemicals and modernization of technological standards in the construction industry have resulted in the development of new chemical additives for optimizing the properties of building materials. Products such as polycarboxylate superplasticizers provide improved fluidity and cohesion of the cement grains, in addition to improving the dispersion with respect to slurries without additives. This study aimed at adapting chemical additives used in civil construction to be used use in oilwell cement slurries systems, using Portland cement CPP-Special Class as the hydraulic binder. The chemical additives classified as defoamer, dispersant, fluid loss controller and retarder were characterized by infrared absorption spectroscopy, thermogravimetric analyses and technological tests set by the API (American Petroleum Institute). These additives showed satisfactory results for its application in cement slurries systems for oil wells. The silicone-based defoamer promoted the reduction of air bubbles incorporated during the stirring of the slurries. The dispersant significantly reduced the rheological parameters of the systems studied. The tests performed with the fluid loss controller and the retarder also resulted in suitable properties for application as chemical additives in cement slurries

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photochemistry and photophysics of 4-chlorophenol (4-CP) were studied onto two model solid supports, silicalite and beta-cyclodextrin (beta-Cl)), using time resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry and photophysics of 4-CP are different from solution and depend on the solid. Ground state diffuse reflectance and time resolved luminescence demonstrated the inclusion of the probe in both substrates. 4-CP exhibits room temperature luminescence in both hosts, being structured and much more intense in beta-CD. The emission was assigned to phosphorescence of the inclusion complex. Transient absorption demonstrated the formation of the unsubstituted phenoxyl radical and of 4-chlorophenoxyl radical in beta-CD. In silicalite only the later was detected. The studies of the photodegradation products indicate that phenol is the main photoproduct in beta-CD. In silicalite the chromatographic analysis indicates the presence of products that involve the ring cleavage. (C) 2002 Elsevier Science B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Ground-state diffuse reflectance, time resolved laser-induced luminescence, diffuse reflectance laser flash-photolysis transient absorption and chromatographic techniques were used to elucidate the photodegradation processes of pyrene adsorbed onto microcrystalline cellulose and silica. Ground-state diffuse reflectance showed that on both substrates low concentrations display absorption of pyrene monomers. At high concentrations spectral changes attributed to aggregate formation were observed. Laser induced fluorescence showed that pyrene onto microcrystalline cellulose mainly presents fluorescence from monomers, while for silica, excimer-like emission was observed from low surface loadings (greater than or equal to 0.5 mumol g(-1)). Transient absorption and photodegradation studies were performed at concentrations where mainly monomers exist. On silica, pyrene presents transient absorption from its radical cation. On microcrystalline cellulose both radical cation, radical anion and pyrene triplet-triplet absorption were detected. Irradiation followed by chromatographic analysis showed that pyrene decomposes on both substrates. For pyrene on microcrystalline cellulose 1-hydroxypyrene was the main identified photoproduct since in the absence of oxygen further oxidation of 1-hydroxypyrene was very slow. For pyrene on silica photodegradation was very efficient. Almost no 1-hydroxypyrene was detected since in the presence of oxygen it is quickly oxidized to other photooxidation products. On both substrates, pyrene radical cation is the intermediate leading to photoproducts and oxygen it is not involved in its formation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The use of biofuels remotes to the eighteenth century, when Rudolf Diesel made the first trials using peanut oil as fuel in a compression ignition engine. Based on these trials, there was the need for some chemical change to vegetable oil. Among these chemical transformations, we can mention the cracking and transesterification. This work aims at conducting a study using the thermocatalytic and thermal cracking of sunflower oil, using the Al-MCM-41 catalyst. The material type mesoporous Al-MCM-41 was synthesized and characterized by Hydrothermical methods of X-ray diffraction, scanning electron microscopy, nitrogen adsorption, absorption spectroscopy in the infrared and thermal gravimetric analysis (TG / DTG).The study was conducted on the thermogravimetric behavior of sunflower oil on the mesoporous catalyst cited. Activation energy, conversion, and oil degradation as a function of temperature were estimated based on the integral curves of thermogravimetric analysis and the kinetic method of Vyazovkin. The mesoporous material Al-MCM-41 showed one-dimensional hexagonal formation. The study of the kinetic behavior of sunflower oil with the catalyst showed a lower activation energy against the activation energy of pure sunflower oil. Two liquid fractions of sunflower oil were obtained, both in thermal and thermocatalytic pyrolisis. The first fraction obtained was called bio-oil and the second fraction obtained was called acid fraction. The acid fraction collected, in thermal and thermocatalytic pyrolisis, showed very high level of acidity, which is why it was called acid fraction. The first fraction was collected bio-called because it presented results in the range similar to petroleum diesel

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The photochemistry of 4-chlorophenol (4-CP) was studied on silica and cellulose, using time-resolved diffuse reflectance techniques and product degradation analysis. The results have shown that the photochemistry of 4-CP depends on the support, on the concentration, and also on the sample preparation method. Transient absorption and photoproduct results can be understood by assuming the formation of the carbene 4-oxocyclohexa-2,5-dienylidene in both supports. On cellulose, at concentrations lower than 10 mumol g(-1), the carbene leads to the unsubstituted phenoxyl radical, and phenol is the main degradation product. At higher concentrations a new transient resulting from phenoxyl radicals coupling was also observed, and dihydroxybiphenyls are also formed. The reaction of the carbene with ground-state 4-CP was also detected through the formation of 5-chloro-2,4'-dihydroxybiphenyl. 4-Chlorophenoxyl radical and degradations products resulting from its coupling were also detected. Oxygen has little effect on the photochemistry of 4-CP on cellulose. On silica the transient benzoquinone O-oxide was formed in the presence of oxygen. Benzoquinone and hydroquinone are the main degradation products. In well-dried samples the formation of hydroquinone is reduced. At higher concentrations the same products as detected on cellulose were observed. 4-CP undergoes slow photochemical decomposition under solar radiation in both supports. The same main degradation products were observed in these conditions.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Aiming to reduce and reuse waste oil from oily sludge generated in large volumes by the oil industry, types of nanostructured materials Al-MCM-41 and Al-SBA-15, with ratios of Si / Al = 50, were synthesized , and calcined solids used as catalysts in the degradation of oily sludge thermocatalytic oil from oilfield Canto do Amaro, in the state of Rio Grande do Norte. Samples of nanostructured materials were characterized by thermogravimetric analysis (TG / DTG), X-ray diffraction (XRD), scanning electron microscopy (SEM), absorption spectroscopy in the infrared Fourier transform (FT-IR) and adsorption nitrogen (BET). The characterization showed that the synthesized materials resulted in a catalyst nanostructure, and ordered pore diameter and surface area according to existing literature. The oily sludge sample was characterized by determining the API gravity and sulfur content and SARA analysis (saturates, aromatics, resins and asphaltenes). The results showed a material equivalent to the average oil with API gravity of 26.1, a low sulfur content and considerable amount of resins and asphaltenes, presented above in the literature. The thermal and catalytic degradation of the oily sludge oil was performed from room temperature to 870 ° C in the ratios of heating of 5, 10 and 20 ° C min-1. The curves generated by TG / DTG showed a more accelerated degradation of oily sludge when it introduced the nanostructured materials. These results were confirmed by activation energy calculated by the method of Flynn-Wall, in the presence of catalysts reduced energy, in particular in the range of cracking, showing the process efficiency, mainly for extraction of lightweight materials of composition of oily sludge, such as diesel and gasoline

Relevância:

80.00% 80.00%

Publicador:

Resumo:

.A novel electrochemical sensing platform was developed based on flower-like gold–zinc oxide core–shell nanoparticles and a graphene nanocomposite-modified glassy carbon electrode. The gold–zinc oxide core–shell nanoflowers were synthesized by seed growth and characterized by high-resolution transmission electron microscopy, energy-dispersive X-ray spectroscopy, and ultraviolet-visible absorption spectroscopy. The modified electrode provided good electrocatalytic properties, rapid response, high stability, and favorable reproducibility for determination of ascorbic acid. The performance of the sensor included a linear dynamic range from 1.0 × 10−7 to 6.0 × 10−4 M, a limit of detection of 3.9 × 10−8 M, and a sensitivity of 24.12 µA/mM. The nanocomposite also provided excellent selectivity and lower potential for the oxidation of ascorbic acid. The sensor was used for the determination of ascorbic acid in tablets with satisfactory results. This device provides rapid, simple, and selective determination of ascorbic acid.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

To meet the urgent requirement of determining trace Pb2+ and Cd2+ in seawater on site, herein we developed a simple but novel electrochemical method, named as double stripping voltammetry, using only a portable heavy metal analyzer. The proposed method consisted of three steps: First, the targeted heavy metal ions in bulk solution were concentrated onto an ionic liquid-graphite-based paste working electrode (ILGPE), which exhibits a dramatic ability of accumulation, by electrodeposition in the presence of Bi3+. Second, the three-electrode arrangement, including the ILGPE loaded with the reduced products, was transferred into 1.0mL acetate buffer solution, followed by a stripping procedure. Third, the measurement was performed with the other stripping voltammetry procedure by using a glassy carbon electrode as working electrode. Under optimum conditions, the linear range values for Pb2+ and Cd2+ in seawater were 0.2-3.2 μg/L and 0.1-3.2 μg/L, respectively. The concentrations of Pb2+ and Cd2+ in five real samples collected from coastal sites of Qingdao City were determined on site, and the results were in good agreement with that obtained with the atomic absorption spectroscopy method. In addition, the analytical performance of working electrode modified with Bi film by in situ mode was investigated in comparison with that by ex situ mode. The results showed that the in situ mode was much better than the ex situ one.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Efficient energy storage holds the key to reducing waste energy and enabling the use of advanced handheld electronic devices, hydrid electric vehicles and residential energy storage. Recently, Li-ion batteries have been identified and employed as energy storage devices due to their high gravimetric and volumetric energy densities, in comparison to previous technologies. However, more research is required to enhance the efficiency of Li-ion batteries by discovering electrodes with larger electrochemical discharge capacities, while maintaining electrochemical stability. The aims of this study are to develop new microwave-assisted synthesis routes to nanostructured insertion cathodes, which harbor a greater affinity for lithium extraction and insertion than bulk materials. Subsequent to this, state-of-the-art synchrotron based techniques have been employed to understand structural and dynamic behaviour of nanostructured cathode materials during battery cell operation. In this study, microwave-assisted routes to a-LiFePO4, VO2(B), V3O7, H2V3O8 and V4O6(OH)4 have all been developed. Muon spin relaxation has shown that the presence of b-LiFePO4 has a detrimental effect on the lithium diffusion properties of a-LiFePO4, in agreement with first principles calculations. For the first time, a-LiFePO4 nanostructures have been obtained by employing a deep eutectic solvent reaction media showing near theoretical capacity (162 mAh g–1). Studies on VO2(B) have shown that the discharge capacity obtained is linked to the synthesis method. Electrochemical studies of H2V3O8 nanowires have shown outstanding discharge capacities (323 mAh g–1 at 100 mA g–1) and rate capability (180 mAh g–1 at 1 A g–1). The electrochemcial properties of V4O6(OH)4 have been investigated for the first time and show a promising discharge capacity of (180 mAh g–1). Lastly, in situ X-ray absorption spectroscopy has been utilised to track the evolution of the oxidation states in a-LiFePO4, VO2(B) and H2V3O8, and has shown these can all be observed dynamically.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

We report a new approach that uses the single beam Z-scan technique, to discriminate between excited state absorption (ESA) and two and three photon nonlinear absorption. By measuring the apparent delay or advance of the pulse in reaching the detector, the nonlinear absorption can be unambiguously identified as either instantaneous or transient. The simple method does not require a large range of input fluences or sophisticated pulse-probe experimental apparatus. The technique is easily extended to any absorption process dependent on pulse width and to nonlinear refraction measurements. We demonstrate in particular, that the large nonlinear absorption in ZnO nanocones when exposed to nanosecond 532 nm pulses, is due mostly to ESA, not pure two-photon absorption.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this article, we present the detailed investigations on platinum related midgap state corresponding to E-c -0.52 eV probed by deep level transient spectroscopy. By irradiating the platinum doped samples with high-energy (1.1 MeV) gamma rays, we observed that the concentration of the midgap state increases and follows a square dependence with irradiation dose. However, the concentration of the acceptor corresponding to E-c -20.28 eV remained constant. Furthermore, from the studies on passivation by atomic hydrogen and thermal reactivation, we noticed that the E-c -0.52 eV level reappears in the samples annealed at high temperatures after hydrogenation. The interaction of platinum with various defects and the qualitative arguments based on the law of mass action suggest that the platinum related midgap defect might possibly correspond to the interstitial platinum-divacancy complex (V-Pt-V).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Arsenic selenide-telluride glasses have been investigated by X-ray absorption and photoelectron spectroscopy. The core electron energy shifts and chemical shifts in K-absorption edge measurements associated with the glass-crystal transitions of pure As2Se3 and As2Te3 have been studied. The effect of composition on the core level energy and valence bands of As2(Se,Te)3 glasses, has been discussed. Mixed-composition glasses are found to be considerably ionic.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

X‐ray absorption near‐edge spectroscopy studies show that Pb in superconducting Tl0.5Pb0.5CaSr2Cu2O7+δ is essentially in the 4+ state while it is in the 2+ state in Pb2Sr2Ca1−xLnxCu3O8+δ.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The effects of the two sampling gate positions, and their widths and the integrator response times on the position, height, and shape of the peaks obtained in a double‐channel gated‐integrator‐based deep‐level transient spectroscopy (DLTS) system are evaluated. The best compromise between the sensitivity and the resolution of the DLTS system is shown to be obtained when the ratio of the two sampling gate positions is about 20. An integrator response time of about 100 ms is shown to be suitable for practical values of emission time constants and heating rates generally used.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

A new deep level transient spectroscopy technique is suggested which allows the deep level parameters to be obtained from a single temperature scan. Using large ratio t2/t1 of the measurement gate positions t1 and t2 and analyzing the steep high‐temperature side of the peak, it is demonstrated that the deep level activation energy can be determined with high accuracy.