963 resultados para Transcription divergente
Resumo:
We investigated whether mutations in the p53 tumor suppressor gene alter UV sensitivity and/or repair of UV-induced DNA damage in primary human skin fibroblasts from patients with Li-Fraumeni syndrome, heterozygous for mutations in one allele of the p53 gene (p53 wt/mut) and sublines expressing only mutant p53 (p53 mut). The p53 mut cells were more resistant than the p53 wt/mut cells to UV cytotoxicity and exhibited less UV-induced apoptosis. DNA repair analysis revealed reduced removal of cyclobutane pyrimidine dimers from overall genomic DNA in vivo in p53 mut cells compared with p53 wt/mut or normal cells. However, p53 mut cells retained the ability to preferentially repair damage in the transcribed strands of expressed genes (transcription-coupled repair). These results suggest that loss of p53 function may lead to greater genomic instability by reducing the efficiency of DNA repair but that cellular resistance to DNA-damaging agents may be enhanced through elimination of apoptosis.
Resumo:
Human transcription initiation factor TFIID is composed of the TATA-binding polypeptide (TBP) and at least 13 TBP-associated factors (TAFs) that collectively or individually are involved in activator-dependent transcription. To investigate protein-protein interactions involved in TFIID assembly and in TAF-mediated activator functions, we have cloned and expressed cDNAs encoding human TAFII80 and TAFII31. Coimmunoprecipitation assays showed that TAFII80 interacted with TAFII250, TAFII31, TAFII20, and TBP, but not with TAFII55. Similar assays showed that TAFII80 interacted with TFIIE alpha and with TFIIF alpha (RAP74) but not with TFIIB, TFIIE beta, or TFIIF beta (RAP30). Further studies with TAFII80 mutations revealed three distinct interaction domains which fall within regions conserved in human TAFII80, Drosophila TAFII60, and yeast TAFII60. The N terminus of TAFII80 (residues 1-100) interacts with both TAFII31 and TAFII20, while two C-terminal regions are involved, respectively, in interactions with TAFII250 and TFIIF alpha (RAP74) (residues 203-276) and with TBP and TFIIE alpha (residues 377-505). The interactions between TAFII80 and general factors TFIIE alpha and TFIIF alpha (RAP74) could be important for recruitment of GTFs during activator-dependent transcription. Because TAFs 80, 31, and 20 show sequence similarities to histones H4, H3, and H2B, as well as some parallel interactions, this subset of TAFs may form a related core structure within TFIID.
Resumo:
Most eukaryotic promoters contain multiple binding sites for one or more transcriptional activators that interact in a synergistic manner. A common view is that synergism is a manifestation of the need for many contacts between activators and the general transcription machinery that a single activator presumably cannot fulfill. In this model, various combinations of protein-protein interactions control the level of gene expression. However, we show here that under physiological conditions, a single binding site and presumably GAL4 can activate transcription to the maximum possible level in vivo. Synergistic effects in this natural system are shown to be consistent with cooperative DNA binding. These results point to DNA occupancy as the major element in fine tuning gene expression in the galactose regulon.
Resumo:
General transcription factor SIII, a heterotrimer composed of 110-kDa (p110), 18-kDa (p18), and 15-kDa (p15) subunits, increases the catalytic rate of transcribing RNA polymerase II by suppressing transient pausing by polymerase at multiple sites on DNA templates. Here we report molecular cloning and biochemical characterization of the SIII p18 subunit, which is found to be a member of the ubiquitin homology (UbH) gene family and functions as a positive regulatory subunit of SIII. p18 is a 118-amino acid protein composed of an 84-residue N-terminal UbH domain fused to a 34-residue C-terminal tail. Mechanistic studies indicate that p18 activates SIII transcriptional activity above a basal level inherent in the SIII p110 and p15 subunits. Taken together, these findings establish a role for p18 in regulating the activity of the RNA polymerase II elongation complex, and they bring to light a function for a UbH domain protein in transcriptional regulation.
Resumo:
The gal operon of Escherichia coli is negatively regulated by repressor binding to bipartite operators separated by 11 helical turns of DNA. Synergistic binding of repressor to separate sites on DNA results in looping, with the intervening DNA as a topologically closed domain containing the two promoters. A closed DNA loop of 11 helical turns, which is in-flexible to torsional changes, disables the promoters either by resisting DNA unwinding needed for open complex formation or by impeding the processive DNA contacts by an RNA polymerase in flux during transcription initiation. Interaction between two proteins bound to different sites on DNA modulating the activity of the intervening segment toward other proteins by allostery may be a common mechanism of regulation in DNA-multiprotein complexes.
Resumo:
Transcription factor NF-E2 activity is thought to be crucial for the transcriptional regulation of many erythroid-specific genes. The three small Maf family proteins (MafF, MafG, and MafK) that are closely related to the c-Maf protooncoprotein constitute half of the NF-E2 activity by forming heterodimers with the large tissue-restricted subunit of NF-E2 called p45. We have established and characterized murine erythroleukemia cells that conditionally overexpress MafK from a metallothionein promoter. The conditional expression of MafK caused accumulation of hemoglobin, an indication of terminal differentiation along the erythroid pathway. Concomitantly, DNA binding activities containing MafK were induced within the MafK-overexpressing cells. These results demonstrate that MafK can promote the erythroid differentiation program in erythroleukemia cells and suggest that the small Maf family proteins are key regulatory molecules for erythroid differentiation.
Resumo:
Electron microscopic visualization indicates that the transcription activator NRI (NTRC) binds with exceptional selectivity and efficiency to a sequence-induced superhelical (spiral) segment inserted upstream of the glnA promoter, accounting for its observed ability to substitute for the natural glnA enhancer. The cooperative binding of NRI to the spiral insert leads to protein oligomerization which, at higher concentration, promotes selective coating of the entire superhelical segment with protein. Localization of NRI at apical loops is observed with negatively supercoiled plasmid DNA. With a linear plasmid, bending of DNA is observed. We confirm that NRI is a DNA-bending protein, consistent with its high affinity for spiral DNA. These results prove that spiral DNA without any homology to the NRI-binding sequence site can substitute for the glnA enhancer by promoting cooperative activator binding to DNA and facilitating protein oligomerization. Similar mechanisms might apply to other prokaryotic and eukaryotic activator proteins that share the ability to bend DNA and act efficiently as multimers.
Resumo:
NGFI-A (also called Egr1, Zif268, or Krox24) and the closely related proteins Krox20, NGFI-C, and Egr3 are zinc-finger transcription factors encoded by immediate-early genes which are induced by a wide variety of extracellular stimuli. NGFI-A has been implicated in cell proliferation, macrophage differentiation, synaptic activation, and long-term potentiation, whereas Krox20 is critical for proper hindbrain segmentation and peripheral nerve myelination. In previous work, a structure/function analysis of NGFI-A revealed a 34-aa inhibitory domain that was hypothesized to be the target of a cellular factor that represses NGFI-A transcriptional activity. Using the yeast two-hybrid system, we have isolated a cDNA clone which encodes a protein that interacts with this inhibitory domain and inhibits the ability of NGFI-A to activate transcription. This NGFI-A-binding protein, NAB1, is a 570-aa nuclear protein that bears no obvious sequence homology to known proteins. NAB1 also represses Krox20 activity, but it does not influence Egr3 or NGFI-G, thus providing a mechanism for the differential regulation of this family of immediate-early transcription factors.
Resumo:
Transcription factor TFIIIB plays a central role in transcription initiation by RNA polymerase III on genes encoding tRNA, 5S rRNA, and other small structural RNAs. We report the purification of a human TFIIIB-derived complex containing only the TATA-binding polypeptide (TBP) and a 90-kDa subunit (TFIIIB90) and the isolation of a cDNA clone encoding the 90-kDa subunit. The N-terminal half of TFIIIB90 exhibits sequence similarity to the yeast TFIIIB70 (BRF) and the class II transcription factor TFIIB and interacts weakly with TBP. The C-terminal half of TFIIIB90 contains a high-mobility-group protein 2 (HMG2)-related domain and interacts strongly with TBP. Recombinant TFIIIB90 plus recombinant human TBP substitute for human TFIIIB in a complementation assay for transcription of 5S, tRNA, and VA1 RNA genes, and both the TFIIB-related domain and the HMG2-related domain are required for this activity. TFIIIB90 is also required for transcription of human 7SK and U6 RNA genes by RNA polymerase III, but apparently within a complex distinct from the TBP/TFIIIB90 complex.
Resumo:
The c-myb protooncogene encodes a highly conserved transcription factor that functions as both an activator and a repressor of transcription. The v-myb oncogenes of E26 leukemia virus and avian myeloblastosis virus encode proteins that are truncated at both the amino and the carboxyl terminus, deleting portions of the c-Myb DNA-binding and negative regulatory domains. This has led to speculation that the deleted regions contain important regulatory sequences. We previously reported that the 42-kDa mitogen-activated protein kinase (p42mapk) phosphorylates chicken and murine c-Myb at multiple sites in the negative regulatory domain in vitro, suggesting that phosphorylation might provide a mechanism to regulate c-Myb function. We now report that three tryptic phosphopeptides derived from in vitro phosphorylated c-Myb comigrate with three tryptic phosphopeptides derived from metabolically labeled c-Myb immunoprecipitated from murine erythroleukemia cells. At least two of these peptides are phosphorylated on serine-528. Replacement of serine-528 with alanine results in a 2- to 7-fold increase in the ability of c-Myb to transactivate a Myb-responsive promoter/reporter gene construct. These findings suggest that phosphorylation serves to regulate c-Myb activity and that loss of this phosphorylation site from the v-Myb proteins may contribute to their transforming potential.
Resumo:
The glass gene is required for proper photo-receptor differentiation during development of the Drosophila eye glass codes for a DNA-binding protein containing five zinc fingers that we show is a transcriptional activator. A comparison of the sequences of the glass genes from two species of Drosophila and a detailed functional domain analysis of the Drosophila melanogaster glass gene reveal that both the DNA-binding domain and the transcriptional-activation domain are highly conserved between the two species. Analysis of the DNA-binding domain of glass indicates that the three carboxyl-terminal zinc fingers alone are necessary and sufficient for DNA binding. We also show that a deletion mutant of glass containing only the DNA-binding domain can behave in a dominant-negative manner both in vivo and in a cell culture assay that measures transcriptional activation.
Resumo:
We present homologies between archaeal and eucaryal DNA-dependent RNA polymerase (RNAP) subunits and transcription factors. The sequences of the Sulfolobus acidocaldarius subunits D, E, and N and alignments with eucaryal homologs are presented here. The similarities between archaeal transcription factors and their eucaryal homologs TFIIB and TBP have been established in other laboratories. The archaeal RNAP subunits H, K, and N, respectively, show high sequence similarity to ABC27, ABC23, and ABC10 beta (found in all three eucaryal RNAPs); subunit D, to AC40 (common to polymerase II and polymerase III) and B44 (polymerase II); and subunit L, to AC19 and B12.5. The similarity of subunit D and its eucaryal homologs to bacterial alpha is limited to the "alpha-motif," which is also present in subunit L and its eucaryal homologs. Genes encoding homologs of the related eucaryal RNAP subunits A12.2/B12.6 and also homologs of eucaryal transcription elongation factors of the TFIIS family have been detected in Sulfolobus acidocaldarius and Thermococcus celer. In archaea, the protein is not an RNAP subunit. Together with the sequence similarities between archaeal box A-containing and eucaryal TATA box-containing promoters, this shows that the archaeal and eucaryal transcription systems are truly homologous and that they differ structurally and functionally from the bacterial transcription machinery. In contrast, however, a number of genes for the archaeal transcription apparatus are organized in clusters resembling the clusters of transcription-associated genes in Bacteria.
Resumo:
Both the DNA elements and the nuclear factors that direct termination of ribosomal gene transcription exhibit species-specific differences. Even between mammals--e.g., human and mouse--the termination signals are not identical and the respective transcription termination factors (TTFs) which bind to the terminator sequence are not fully interchangeable. To elucidate the molecular basis for this species-specificity, we have cloned TTF-I from human and mouse cells and compared their structural and functional properties. Recombinant TTF-I exhibits species-specific DNA binding and terminates transcription both in cell-free transcription assays and in transfection experiments. Chimeric constructs of mouse TTF-I and human TTF-I reveal that the major determinant for species-specific DNA binding resides within the C terminus of TTF-I. Replacing 31 C-terminal amino acids of mouse TTF-I with the homologous human sequences relaxes the DNA-binding specificity and, as a consequence, allows the chimeric factor to bind the human terminator sequence and to specifically stop rDNA transcription.
Resumo:
The application of DNA technology to regulate the transcription of disease-related genes in vivo has important therapeutic potentials. The transcription factor E2F plays a pivotal role in the coordinated transactivation of cell cycle-regulatory genes such as c-myc, cdc2, and the gene encoding proliferating-cell nuclear antigen (PCNA) that are involved in lesion formation after vascular injury. We hypothesized that double-stranded DNA with high affinity for E2F may be introduced in vivo as a decoy to bind E2F and block the activation of genes mediating cell cycle progression and intimal hyperplasia after vascular injury. Gel mobility-shift assays showed complete competition for E2F binding protein by the E2F decoy. Transfection with E2F decoy inhibited expression of c-myc, cdc2, and the PCNA gene as well as vascular smooth muscle cell proliferation both in vitro and in the in vivo model of rat carotid injury. Furthermore, 2 weeks after in vivo transfection, neointimal formation was significantly prevented by the E2F decoy, and this inhibition continued up to 8 weeks after a single transfection in a dose-dependent manner. Transfer of an E2F decoy can therefore modulate gene expression and inhibit smooth muscle proliferation and vascular lesion formation in vivo.
Resumo:
Sphingosylphosphocholine (SPC) is the deacylated derivative of sphingomyelin known to accumulate in neuropathic Niemann-Pick disease type A. SPC is a potent mitogen that increases intracellular free Ca2+ and free arachidonate through pathways that are only partly protein kinase C-dependent. Here we show that SPC increased specific DNA-binding activity of transcription activator AP-1 in electrophoretic mobility-shift assays. Increased DNA-binding activity of AP-1 was detected after only 1-3 min, was maximal after 6 hr, and remained elevated at 12-24 hr. c-Fos was found to be a component of the AP-1 complex. Northern hybridization revealed an increase in c-fos transcripts after 30 min. Since the increase in AP-1 binding activity preceded the increase in c-fos mRNA, posttranslational modifications may be important in mediating the early SPC-induced increases in AP-1 DNA-binding activity. Western analysis detected increases in nuclear c-Jun and c-Fos proteins following SPC treatment. SPC also transactivated a reporter gene construct through the AP-1 recognition site, indicating that SPC can regulate the expression of target genes. Thus, SPC-induced cell proliferation may result from activation of AP-1, linking signal transduction by SPC to gene expression. Since the expression of many proteins with diverse functions is known to be regulated by AP-1, SPC-induced activation of AP-1 may contribute to the pathophysiology of Niemann-Pick disease.