937 resultados para Tower of Winds
Resumo:
The overarching goal of the Yamal portion of the Greening of the Arctic project is to examine how the terrain and anthropogenic factors of reindeer herding and resource development combined with the climate variations on the Yamal Peninsula affect the spatial and temporal patterns of vegetation change and how these changes are in turn affecting traditional herding of the indigenous people of the region. The purpose of the expeditions was to collect groundobservations in support of remote sensing studies at four locations along a transect that traverses all the major bioclimate subzones of the Yamal Peninsula. This data report is a summary of information collected during the 2007 and 2008 expeditions. It includes all the information from the 2008 data report (Walker et al. 2008) plus new information collected at Kharasavey in Aug 2008. The locations included in this report are Nadym (northern taiga subzone), Laborovaya (southern tundra = subzone E of the Circumpolar Arctic Vegetation Map (CAVM), Vaskiny Dachi (southern typical tundra = subzone D), and Kharasavey (northern typical tundra = subzone C). Another expedition is planned for summer 2009 to the northernmost site at Belyy Ostrov (Arctic tundra = subzone B). Data are reported from 10 study sites - 2 at Nadym, 2 at Laborovaya, and 3 at Vaskiny Dachi and 3 at Kharasavey. The sites are representative of the zonal soils and vegetation, but also include variation related to substrate (clayey vs. sandy soils). Most of the information was collected along 5 transects at each sample site, 5 permanent vegetation study plots, and 1-2 soil pits at each site. The expedition also established soil and permafrost monitoring sites at each location. This data report includes: (1) background for the project, (2) general descriptions and photographs of each locality and sample site, (3) maps of the sites, study plots, and transects at each location, (4) summary of sampling methods used, (5) tabular summaries of the vegetation data (species lists, estimates of cover abundance for each species within vegetation plots, measured percent ground cover of species along transects, site factors for each study plot), (6) summaries of the Normalized Difference Vegetation Index (NDVI) and leaf area index (LAI) along each transect, (7) soil descriptions and photos of the soil pits at each study site, (8) summaries of thaw measurements along each transect, and (9) contact information for each of the participants. One of the primary objectives was to provide the Russian partners with full documentation of the methods so that Russian observers in future years could repeat the observations independently.
Resumo:
The northern Arabian Sea is one of the few regions in the open ocean where thermocline water is severely depleted in oxygen. The intensity of this oxygen minimum zone (OMZ) has been reconstructed over the past 225,000 years using proxies for surface water productivity, water column denitrification, winter mixing, and the aragonite compensation depth (ACD). Changes in OMZ intensity occurred on orbital and suborbital timescales. Lowest O2 levels correlate with productivity maxima and shallow winter mixing. Precession-related productivity maxima lag early summer insolation maxima by ~6 kyr, which we attribute to a prolonged summer monsoon season related to higher insolation at the end of the summer. Periods with a weakened or even non-existent OMZ are characterized by low productivity conditions and deep winter mixing attributed to strong and cold winter monsoonal winds. The timing of deep winter mixing events corresponds with that of periods of climatic cooling in the North Atlantic region.
Resumo:
The Benguela Current, located off the west coast of southern Africa, is tied to a highly productive upwelling system**1. Over the past 12 million years, the current has cooled, and upwelling has intensified**2, 3, 4. These changes have been variously linked to atmospheric and oceanic changes associated with the glaciation of Antarctica and global cooling**5, the closure of the Central American Seaway**1, 6 or the further restriction of the Indonesian Seaway**3. The upwelling intensification also occurred during a period of substantial uplift of the African continent**7, 8. Here we use a coupled ocean-atmosphere general circulation model to test the effect of African uplift on Benguela upwelling. In our simulations, uplift in the East African Rift system and in southern and southwestern Africa induces an intensification of coastal low-level winds, which leads to increased oceanic upwelling of cool subsurface waters. We compare the effect of African uplift with the simulated impact of the Central American Seaway closure9, Indonesian Throughflow restriction10 and Antarctic glaciation**11, and find that African uplift has at least an equally strong influence as each of the three other factors. We therefore conclude that African uplift was an important factor in driving the cooling and strengthening of the Benguela Current and coastal upwelling during the late Miocene and Pliocene epochs.
Resumo:
As part of the large-scale, interdisciplinary deep-sea study "BIGSET", the relationship between the monsoon-induced regional and temporal variability of POC deposition and the small-sized benthic community was investigated at several sites 2316-4420 m deep in the Arabian Sea during four cruises between 1995 and 1998. Vertical and horizontal distribution patterns of chloroplastic pigments (a measure of phytodetritus deposition), readily soluble protein and activity, and biomass parameters of the small-sized benthic community (Electron Transport System Activity (ETSA); bacterial ectoenzymatic activity (FDA turnover) and DNA concentrations) were measured concurrently with the vertical fluxes of POC and chloroplastic pigments. Sediment chlorophyll a (chl. a) profiles were used to calculate chl. a flux rates and to estimate POC flux across the sediment water interface using two different transport reaction models. These estimates were compared with corresponding flux rates determined in sediment traps. Regional variability of primary productivity and POC deposition at the deep-sea floor creates a trophic gradient in the Arabian Basin from the NW to the SE, which is primarily related to the activity of monsoon winds and processes associated with the topography of the Arabian Basin and the vicinity of land masses. Inventories of sediment chloroplastic pigments closely corresponded to this trophic gradient. For ETSA, FDA and DNA, however, no clear coupling was found, although stations WAST (western Arabian Sea) and NAST (northern Arabian Sea) were characterised by high concentrations and activities. These parameters exhibited high spatial and temporal variability, making it impossible to recognise clear mechanisms controlling temporal and spatial community patterns of the small-sized benthic biota. Nevertheless, the entire Arabian Basin was recognised as being affected by monsoonal activity. Comparison of two different transport reaction models indicates that labile chl. a buried in deeper sediment layers may escape rapid degradation in Arabian deep-sea sediments.
Resumo:
We derive tropospheric column BrO during the ARCTAS and ARCPAC field campaigns in spring 2008 using retrievals of total column BrO from the satellite UV nadir sensors OMI and GOME-2 using a radiative transfer model and stratospheric column BrO from a photochemical simulation. We conduct a comprehensive comparison of satellite-derived tropospheric BrO column to aircraft in-situ observations of BrO and related species. The aircraft profiles reveal that tropospheric BrO, when present during April 2008, was distributed over a broad range of altitudes rather than being confined to the planetary boundary layer (PBL). Perturbations to the total column resulting from tropospheric BrO are the same magnitude as perturbations due to longitudinal variations in the stratospheric component, so proper accounting of the stratospheric signal is essential for accurate determination of satellite-derived tropospheric BrO. We find reasonably good agreement between satellite-derived tropospheric BrO and columns found using aircraft in-situ BrO profiles, particularly when satellite radiances were obtained over bright surfaces (albedo >0.7), for solar zenith angle <80° and clear sky conditions. The rapid activation of BrO due to surface processes (the bromine explosion) is apparent in both the OMI and GOME-2 based tropospheric columns. The wide orbital swath of OMI allows examination of the evolution of tropospheric BrO on about hourly time intervals near the pole. Low surface pressure, strong wind, and high PBL height are associated with an observed BrO activation event, supporting the notion of bromine activation by high winds over snow.
Resumo:
Results from Ocean Drilling Program sites 1121-1124 show the Eastern New Zealand Oceanic Sedimentary System (ENZOSS) evolved in response to: (1) the inception of the circum-Antarctic circulation, (2) orbital and nonorbital regulation of the global thermohaline flow, and (3) development of the New Zealand plate boundary. ENZOSS began in the early Oligocene following opening of the Tasmanian gateway and inception of the ancestral Antarctic Circumpolar Current (ACC) and SW Pacific Deep Western Boundary Current (DWBC). Widespread erosion, marked by the Marshall Paraconformity, was followed by extensive drift formation in the late Oligocene- early Miocene. Alternating nannofossil chalk and nannofossil-rich mud deposited in response to 41-kyr orbital regulation of the abyssal circulation, with the mudstones representing times of increased inflow of corrosive southernsource waters. Drift deposition at the deepest sites was interrupted by bouts of erosion coincident with Mi 1-5 isotopic events signifying expansions of the East Antarctic Ice Sheet and enhanced bottom water formation. By late Miocene times, the basic ENZOSS was established. South of Bounty Trough, the energetic ACC instigated an erosional/low depositional regime. To the north, where the DWBC prevailed, orbitally regulated drift deposition continued. Increased convergence at the New Zealand plate boundary enhanced the terrigenous supply, but little of this sediment reached the deep ENZOSS as the three main sediment conduits - Solander, Bounty and Hikurangi channels - had not fully developed. The Plio-Pleistocene heralded a change from a carbonate- to terrigenous-dominant supply caused by interception of the DWBC by the three channels (~1.6 Ma for Bounty and Hikurangi, time of Solander interception unknown). The Solander and Bounty fans, and Hikurangi Fan-drift systems formed, and drifts downstream of those systems, received terrigenous detritus. Supply increased with accelerating uplift along the plate boundary, but delivery to the DWBC was regulated by eustatic fluctuations of sea level. Times of maximum supply to all three channels was during glacial lowstands whereas the supply either ceased (Bounty, Solander), or reduced (Hikurangi) in highstands. In glacial times, sediment was entrained by a DWBC invigorated by an increased input of Antarctic bottom water. The ACC also accelerated under strengthened glacial winds. Thus, glacials were times of optimum sediment supply to ENZOSS depocentres where depositional rates were 2-3 times more than interglacial rates.
Resumo:
The radiogenic isotope composition of neodymium (Nd) and strontium (Sr) are useful tools to investigate present and past oceanic circulation or input of terrigenous material. We present Nd and Sr isotope compositions extracted from different sedimentary phases, including early diagenetic Fe-Mn coatings, "unclean" foraminiferal shells, fossil fish teeth, and detritus of marine surface sediments (core-tops) covering the entire midlatitude South Pacific. Comparison of detrital Nd isotope compositions to deep water values from the same locations suggests that "boundary exchange" has little influence on the Nd isotope composition of western South Pacific seawater. Concentrations of Rare Earth Elements (REE) and Al/Ca ratios of "unclean" planktonic foraminifera suggest that this phase is a reliable recorder of seawater Nd isotope composition. The signatures obtained from fish teeth and "nondecarbonated" leachates of bulk sediment Fe-Mn oxyhydroxide coatings also agree with "unclean" foraminifera. Direct comparison of Nd isotope compositions extracted using these methods with seawater Nd isotope compositions is complicated by the low accumulation rates yielding radiocarbon ages of up to 24 kyr, thus mixing the signal of different ocean circulation modes. This suggests that different past seawater Nd isotope compositions have been integrated in authigenic sediments from regions with low sedimentation rates. Combined detrital Nd and Sr isotope signatures indicate a dominant role of the Westerly winds transporting lithogenic material from South New Zealand and Southeastern Australia to the open South Pacific. The proportion of this material decreases toward the east, where supply from the Andes increases and contributions from Antarctica cannot be ruled out.
Resumo:
High-resolution records of alkenone-derived sea surface temperatures and elemental Ti/Ca ratios from a sediment core retrieved off northeastern Brazil (4° S) reveal short-term climate variability throughout the past 63,000 a. Large pulses of terrigenous sediment discharge, caused by increased precipitation in the Brazilian hinterland, coincide with Heinrich events and the Younger Dryas period. Terrigenous input maxima related to Heinrich events H6-H2 are characterized by rapid cooling of surface water ranging between 0.5 and 2° C. This signature is consistent with a climate model experiment where a reduction of the Atlantic meridional overturning circulation (AMOC) and related North Atlantic cooling causes intensification of NE trade winds and a southward movement of the Intertropical Convergence Zone, resulting in enhanced precipitation off northeastern Brazil. During deglaciation the surface temperature evolution at the core site predominantly followed the Antarctic warming trend, including a cooling, prior to the Younger Dryas period. An abrupt temperature rise preceding the onset of the Bølling/Allerød transition agrees with model experiments suggesting a Southern Hemisphere origin for the abrupt resumption of the AMOC during deglaciation caused by Southern Ocean warming and associated with northward flow anomalies of the South Atlantic western boundary current.
Resumo:
The sub-Antarctic zone (SAZ) lies between the subtropical convergence (STC) and the sub-Antarctic front (SAF), and is considered one of the strongest oceanic sinks of atmospheric CO2. The strong sink results from high winds and seasonally low sea surface fugacities of CO2 (fCO2), relative to atmospheric fCO2. The region of the SAZ, and immediately south, is also subject to mode and intermediate water formation, yielding a penetration of anthropogenic CO2 below the mixed layer. A detailed analysis of continuous measurements made during the same season and year, February - March 1993, shows a coherent pattern of fCO2 distributions at the eastern (WOCE/SR3 at about 145°E) and western edges (WOCE/I6 at 30°E) of the Indian sector of the Southern Ocean. A strong CO2 sink develops in the Austral summer (delta fCO2 < - 50 µatm) in both the eastern (110°-150°E) and western regions (20°-90°E). The strong CO2 sink in summer is due to the formation of a shallow seasonal mixed-layer (about 100 m). The CO2 drawdown in the surface water is consistent with biologically mediated drawdown of carbon over summer. In austral winter, surface fCO2 is close to equilibrium with the atmosphere (delta fCO2 ± 5 µatm), and the net CO2 exchange is small compared to summer. The near-equilibrium values in winter are associated with the formation of deep winter mixed-layers (up to 700 m). For years 1992-95, the annual CO2 uptake for the Indian Ocean sector of the sub Antarctic Zone (40°-50°S, 20°-150°E) is estimated to be about 0.4 GtC/yr. Extrapolating this estimate to the entire sub-Antarctic zone suggests the uptake in the circumpolar SAZ is approaching 1 GtC/yr.
Resumo:
Ocean Drilling Program Site 658 at 21°N off northwest Africa has a high sedimentation rate and a high concentration of pollen grains and is thus very suitable for detailed pollen analysis. The time scale for the upper 100 m (the last 670 k.y.) of Site 658 is based on biostratigraphic data and isotope stratigraphy. The pollen record has been divided into 34 zones. These are classified into 7 zone types covering a range from very arid to rather humid conditions. The sequence shows a long-term climatic decline: strong glacial stages were found only after 480 k.y. and strong interglacial stages only before 280 k.y. The Site 658 record correlates well with a terrestrial sequence from northern Greece, although both records differ in their response to global climatic change. Spectral analysis shows a 100- and a 42-k.y. period in the curves of pollen brought in by the northwest trade winds and only a 42-k.y. period in the curves of pollen mostly transported by the African Easterly Jet. A 31-k.y. period is found in the curves for Ephedra and Chenopodiaceae-Amaranthaceae. In addition, Ephedra shows a 54-k.y. period.
Resumo:
In 1937 the "Meteor" performed the cruises of the first part of the "Deutsche Nordatlantische Expedition". This publication treats seven stations of three-day-anchoring occupied during that time, five of which are located on the shelf, one on the continental slope and one on a ridge between the Capverde islands. The Bohnecke current meter, an instrument developed for the expedition, is described briefly and it's accuracy studied by comparing the measurements of two instruments which operated simultaneously at the same depth. It is shown that it is very sensitive for movements of the anchored ship because of the very short measuring intervall (2 minutes). The influence of the ship's movements could not be eliminated completely, the mode of using the instrument at different depths being unsuitable for this. Considering the stratification the accuracy of it's representation by the mean temperature and salinity distributionis studied. It is shown that under certain conditions a distribution estimated from observed values gives more exact results. This especially applies to the TS-diagram. Station Meteor336, located on the shelf near Cape Juby, shows temperatures 4 °C less than the open ocean and so belongs to the area of upwelling. During the observation period, however, internal tides are prominent. The diurnal component is of considerable influence, the distinction from inertial oscillations (25.5 hours) not being possible, however. Station Meteor341, on the shelf off Spanish-Sahara, gives an excellent example of the movements in the centre of the area of upwelling. Changing it's direction by 45° at the beginning of the measurements, the wind causes a change of current direction at all depths which, after some inertial oscillations (period 28.3 hours), settles down to a final value. At the beginning and the end of the observations the current at the upper depths is directed off-shore, the angle between current and wind being 22°, while at the lower depths it is orientated towards the shore. The depth of the upper homogenous layer gives the origin of the water transported upwards When during the inertial oscillations the current goes offshore at all depths temporarily, a sudden disturbance occurs in the temperature measurements. Station Meteor311 is located similar to station Meteor341 but was occupied one month earlier. At that time the wind situation was unnormal, the usual wind direction of 45° occuring at the end of the station. Therefore an unnormally high vertical shear of current speed and direction has been observed, the current vector being directed off-shore at the surface and near the bottom, towards the coast inbetween. The TS-diagram shows that the bottom water is replaced first so that upwelling does not occur during observation time. The state reached at the end of the station does not seem to be stable. Station Meteor369, on the continental slope, is governed by internal waves. Besides the internal tide of 12.4 hours a wave of 6.5 hour period is observed, being possibly amplified by the large bottom slope. In 40 - 60 m depth, where the thermocline is located, a wave with 3.3 hour period is observed which is argued to be an internal boundary wave. Station Meteor334 is located on the shelf NW of the mouth of the Senegal river. A marked temperature stratification, associated with large disturbances, and nearly constant salinity have been found there. The current was going slowly towards S or SW in the upper 20 - 30 m, towards N underneath. At the boundary of the current systems intense turbulence developed,including as it seems a water type of less salinity which is transported from the Senegal river by the lower current. Station Meteor327, located at 100 m depth between two of the Capverde islands, shows oceanic characteristics. The semidiurnal tide is found mainly, the diurnal component having considerable influence. Furtheron an internal wave of 6 hour period is seen the maximum amplitude of which is moving slowly downwards. Two possibilities of explaining it are discussed. Station Meteor366 is found in the area of ceasing winds off the coast of upper Guinea. The temperature there depends strongly on the depth, the salinity being nearly constant. The currents are divided into an upper and a lower system with large variations in both of them. A change of wind direction of nearly 90° is supposed to be the reason. The variations in salinity accordingly are interpreted as the influence of fresh water outflow from land which is felt in a different way at different wind directions. In the last section the daily changes in air and water temperature are studied. The upwelling having large influence on these, a centre of the area of upwelling can be located at about 100 miles north of Cape Blanc (Station Meteor311). The semidiurnal tidal component is compared with previous results for the Atlantic Ocean yielding considerable differences for the direction and time of occurence of the current maximum which might be due to the topographical influences around the shelf.
Resumo:
Intervals of organic C- and carbonate-rich laminated sediments occur in the Sea of Japan with roughly the same frequency as temperature changes observed in Greenland ice cores, providing clear evidence of rapid oceanographic change during the past 36 kyr. Planktonic foraminiferal d18O data suggest that only the laminated sediments deposited during the Last Glacial Maximum (LGM), and perhaps one other interval formed during a period of increased water column stratification. Sedimentary Re and Mo data are consistent with bottom waters that were sulfidic during the LGM and suboxic during other laminated intervals. Results of a numerical model of Corg and Re burial are consistent with a mechanism whereby an increased Corg flux to the seafloor drove oxygen concentrations toward depletion during times of deposition of the suboxic laminated intervals. Such a process could have resulted from increased upwelling driven either by increased deep water formation due to colder and/or more saline surface waters or by stronger northeasterly monsoonal winds.