820 resultados para Toughness.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Nanocomposites of polypropylene (PP) and polypropylene/styrene-(ethylene-co-butylene)-styrene triblock copolymer (SEBS) blends with exfoliated graphene nanoplatelets (xGnP) were prepared by melt-mixing method. The incorporation of xGnP increased the stiffness and crystallinity of PP at the expense of toughness and the molecular mobility. The effect of addition of SEBS on the mechanical, viscoelastic, thermal degradation and crystallization properties of PP/xGnP composites was studied. The addition of SEBS into PP transformed the phase structure and distribution of xGnP in the PP matrix. SEM micrographs revealed that SEBS polymer chains formed a coating over the graphene nanoplatelets, which strengthened the interface between the filler and the matrix, and improved the dispersion and distribution of the filler throughout the matrix.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The complex architecture of many fibre-reinforced composites makes the generation of finite element meshes a labour-intensive process. The embedded element method, which allows the matrix and fibre reinforcement to be meshed separately, offers a computationally efficient approach to reduce the time and cost of meshing. In this paper we present a new approach of introducing cohesive elements into the matrix domain to enable the prediction of matrix cracking using the embedded element method. To validate this approach, experiments were carried out using a modified Double Cantilever Beam with ply drops, with the results being compared with model predictions. Crack deflection was observed at the ply drop region, due to the differences in stiffness, strength and toughness at the bi-material interface. The new modelling technique yields accurate predictions of the failure process in composites, including fracture loads and crack deflection path.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Ti-Zr alloys have recently started to receive a considerable amount of attention as promising materials for dental applications. This work compares mechanical properties of a new Ti-15Zr alloy to those of commercially pure titanium Grade4 in two surface conditions - machined and modified by sand-blasting and etching (SLA). As a result of significantly smaller grain size in the initial condition (1-2µm), the strength of Ti-15Zr alloy was found to be 10-15% higher than that of Grade4 titanium without reduction in the tensile elongation or compromising the fracture toughness. The fatigue endurance limit of the alloy was increased by around 30% (560MPa vs. 435MPa and 500MPa vs. 380MPa for machined and SLA-treated surfaces, respectively). Additional implant fatigue tests showed enhanced fatigue performance of Ti-15Zr over Ti-Grade4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new finite modelling approach is presented to analyse the mode I delamination fracture toughness of z-pinned laminates using the computationally efficient embedded element technique. In the FE model,each z-pin is represented by a single one-dimensional truss element that is embedded within the laminate. Each truss is given the material, geometric and spatial properties associated with the global crackbridging traction response of a z-pin in the laminate; this simplification provides a computationally efficient and flexible model where pin elements are independent of the underlying structural mesh for thelaminate. The accuracy of the FE modelling approach is assessed using mode I interlaminar fracture toughness data for a carbon-epoxy laminate reinforced with z-pins made of copper, titanium or stainless steel. The model is able to predict with good accuracy the crack growth resistance curves and fracture toughness properties for the different types of z-pinned laminate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The objective of this research is to synthesize structural composites designed with particular areas defined with custom modulus, strength and toughness values in order to improve the overall mechanical behavior of the composite. Such composites are defined and referred to as 3D-designer composites. These composites will be formed from liquid crystalline polymers and carbon nanotubes. The fabrication process is a variation of rapid prototyping process, which is a layered, additive-manufacturing approach. Composites formed using this process can be custom designed by apt modeling methods for superior performance in advanced applications. The focus of this research is on enhancement of Young's modulus in order to make the final composite stiffer. Strength and toughness of the final composite with respect to various applications is also discussed. We have taken into consideration the mechanical properties of final composite at different fiber volume content as well as at different orientations and lengths of the fibers. The orientation of the LC monomers is supposed to be carried out using electric or magnetic fields. A computer program is modeled incorporating the Mori-Tanaka modeling scheme to generate the stiffness matrix of the final composite. The final properties are then deduced from the stiffness matrix using composite micromechanics. Eshelby's tensor, required to calculate the stiffness tensor using Mori-Tanaka method, is calculated using a numerical scheme that determines the components of the Eshelby's tensor (Gavazzi and Lagoudas 1990). The numerical integration is solved using Gaussian Quadrature scheme and is worked out using MATLAB as well. . MATLAB provides a good deal of commands and algorithms that can be used efficiently to elaborate the continuum of the formula to its extents. Graphs are plotted using different combinations of results and parameters involved in finding these results

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypersonic aerospace vehicles are severely limited by the lack of adequate high temperature materials that can withstand the harsh hypersonic environment. Tantalum carbide (TaC), with a melting point of 3880°C, is an ultrahigh temperature ceramic (UHTC) with potential applications such as scramjet engines, leading edges, and zero erosion nozzles. However, consolidation of TaC to a dense structure and its low fracture toughness are major challenges that make it currently unviable for hypersonic applications. In this study, Graphene NanoPlatelets (GNP) reinforced TaC composites are synthesized by spark plasma sintering (SPS) at extreme conditions of 1850˚C and 80-100 MPa. The addition of GNP improves densification and enhances fracture toughness of TaC by up to ~100% through mechanisms such as GNP bending, sliding, pull-out, grain wrapping, crack bridging, and crack deflection. Also, TaC-GNP composites display improved oxidation behavior over TaC when exposed to a high temperature plasma flow exceeding 2500 ˚C.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This dissertation presents the results of in-depth qualitative interviews with twenty-three formerly imprisoned men regarding their lived experience with prison conflict and the pain of incarceration. The results suggest that prison is a gendered ‘total institution’ (Goffman 1961). The pains that men experience in prison are uniquely gendered in that the deprivations imposed by incarceration– deprivation of autonomy, liberty, goods and services, heterosexual sex, and security (Sykes 1958) – in the reverse, define idealized masculinity as it is currently socially constructed: self-reliance, independence, toughness or invulnerability, material and economic success, and heterosexual prowess. From these shared deprivations emerges a gendered code of conduct that perpetuates a hierarchy among incarcerated men by constructing violent masculinity as a subcultural norm. The results suggest that the gender code in prison represents a set of rules that create opportunities for men to police each other’s gender performance and make claims to masculine statuses. Because status is inextricably tied to survival in this context, many men feel pressured to perform violent masculinities in prison despite privately subscribing to a non-violent sense of self-concept. The results suggest that violence is an expressive and instrumental resource for men in prison. A gender theory of prison violence, methodological findings, theoretical implications, ethical considerations and the short and long term aftermath of violent prison conflict are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Na prática clínica, a diversidade de instrumentos manuais, rotatórios ou reciprocantes, dificulta a seleção do sistema a aplicar no retratamento dentário não cirúrgico. O presente trabalho teve como objetivo comparar diferentes instrumentos quanto a diferentes parâmetros: capacidade de remoção de Gutta-Percha (GP), extrusão apical de detritos, fratura de instrumentos, e ocorrência de iatrogenias. Neste trabalho foram utilizadas 111 publicações posteriores a 2011, obtidas via PubMed e Science Direct. A análise da bibliografia indica que, independentemente do sistema, não é possível remover todo o material obturador das paredes radiculares, sendo esta tarefa dificultada em canais curvos e na área apical. Verifica-se que a remoção de GP melhora no sentido: limas H, ProTaper, e Mtwo. O sistema Reciproc foi associado a melhores desempenhos e a menores tempo de trabalho, do que os sistemas de rotação contínua. Nenhum dos instrumentos analisados é capaz de evitar a extrusão apical de detritos na totalidade. Apesar de resultados dispares, a maioria dos estudos assume que o sistema Reciproc provoca menor extrusão apical de detritos. Em Endodontia, as duas principais causas da fratura de instrumentos são a fadiga cíclica e a torsão. A maioria dos estudos concordam que o movimento reciprocante, como o do Reciproc, aumenta a resistência à fractura e a resistência à torsão, mantendo a anatomia original do canal. Relativamente à produção de perfurações e fracturas radiculares, a superioridade dos instrumentos NiTi relativamente às limas manuais não foi clara. De acordo com a literatura, o sistema Reciproc, constituído por liga de NiTi M-Wire, está associado a menos eventos iatrogénicos. Finalmente, conclui-se que futuros estudos seriam benéficos para esclarecer o potencial dos diferentes sistemas estudados.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We predict macroscopic fracture related material parameters of fully exfoliated clay/epoxy nano- composites based on their fine scale features. Fracture is modeled by a phase field approach which is implemented as user subroutines UEL and UMAT in the commercial finite element software Abaqus. The phase field model replaces the sharp discontinuities with a scalar damage field representing the diffuse crack topology through controlling the amount of diffusion by a regularization parameter. Two different constitutive models for the matrix and the clay platelets are used; the nonlinear coupled system con- sisting of the equilibrium equation and a diffusion-type equation governing the phase field evolution are solved via a NewtoneRaphson approach. In order to predict the tensile strength and fracture toughness of the clay/epoxy composites we evaluated the J integral for different specimens with varying cracks. The effect of different geometry and material parameters, such as the clay weight ratio (wt.%) and the aspect ratio of clay platelets are studied.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

With a new finite strain anisotropic framework, we introduce a unified approach for constitutive model- ing and delamination of composites. We describe a finite-strain semi-implicit integration algorithm and the application to assumed-strain hexahedra. In a laminate composite, the laminae are modeled by an anisotropic Kirchhoff/Saint-Venant material and the interfaces are modeled by the exponential cohesive law with intrinsic characteristic length and the criterion by Benzeggagh and Kenane for the equivalent fracture toughness. For the element formulation, a weighted least-squares algorithm is used to calculate the mixed strain. Löwdin frames are used to model orthotropic materials without the added task of per- forming a polar decomposition or empirical frames. To assess the validity of our proposals and inspect step and mesh size dependence, a least-squares based hexahedral element is implemented and tested in depth in both deformation and delamination examples.