851 resultados para Topic discovery


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We are indebted with Marnix Medema, Paul Straight and Sean Rovito, for useful discussions and critical reading of the manuscript, as well as with Alicia Chagolla and Yolanda Rodriguez of the MS Service of Unidad Irapuato, Cinvestav, and Araceli Fernandez for technical support in high-performance computing. This work was funded by Conacyt Mexico (grants No. 179290 and 177568) and FINNOVA Mexico (grant No. 214716) to FBG. PCM was funded by Conacyt scholarship (No. 28830) and a Cinvestav posdoctoral fellowship. JF and JFK acknowledge funding from the College of Physical Sciences, University of Aberdeen, UK.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A rapidly growing area of genome research is the generation of expressed sequence tags (ESTs) in which large numbers of randomly selected cDNA clones are partially sequenced. The collection of ESTs reflects the level and complexity of gene expression in the sampled tissue. To date, the majority of plant ESTs are from nonwoody plants such as Arabidopsis, Brassica, maize, and rice. Here, we present a large-scale production of ESTs from the wood-forming tissues of two poplars, Populus tremula L. × tremuloides Michx. and Populus trichocarpa ‘Trichobel.’ The 5,692 ESTs analyzed represented a total of 3,719 unique transcripts for the two cDNA libraries. Putative functions could be assigned to 2,245 of these transcripts that corresponded to 820 protein functions. Of specific interest to forest biotechnology are the 4% of ESTs involved in various processes of cell wall formation, such as lignin and cellulose synthesis, 5% similar to developmental regulators and members of known signal transduction pathways, and 2% involved in hormone biosynthesis. An additional 12% of the ESTs showed no significant similarity to any other DNA or protein sequences in existing databases. The absence of these sequences from public databases may indicate a specific role for these proteins in wood formation. The cDNA libraries and the accompanying database are valuable resources for forest research directed toward understanding the genetic control of wood formation and future endeavors to modify wood and fiber properties for industrial use.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Daphniphyllum alkaloids are a group of highly complex polycyclic alkaloids. Examination of the structures if several members of this family of natural products led to a hypothesis about their mode of biosynthesis (depicted in Scheme SI). Based on this hypothetical biosynthetic pathway, a laboratory synthesis was designed that incorporated as a key transformation the novel one-pot transformation of dialdehyde 24 to pentacyclic unsaturated amine 25. This process turned out to be an exceptionally efficient way to construct the pentacyclic nucleus of the Daphniphyllum alkaloids. However, a purely fortuitous discovery, resulting from accidental use of methylamine rather than ammonia, led to a great improvement in the synthesis and suggests an even more attractive possible biosynthesis.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Volemitol (d-glycero-d-manno-heptitol, α-sedoheptitol) is an unusual seven-carbon sugar alcohol that fulfills several important physiological functions in certain species of the genus Primula. Using the horticultural hybrid polyanthus (Primula × polyantha) as our model plant, we found that volemitol is the major nonstructural carbohydrate in leaves of all stages of development, with concentrations of up to 50 mg/g fresh weight in source leaves (about 25% of the dry weight), followed by sedoheptulose (d-altro-2-heptulose, 36 mg/g fresh weight), and sucrose (4 mg/g fresh weight). Volemitol was shown by the ethylenediaminetetraacetate-exudation technique to be a prominent phloem-mobile carbohydrate. It accounted for about 24% (mol/mol) of the phloem sap carbohydrates, surpassed only by sucrose (63%). Preliminary 14CO2 pulse-chase radiolabeling experiments showed that volemitol was a major photosynthetic product, preceded by the structurally related ketose sedoheptulose. Finally, we present evidence for a novel NADPH-dependent ketose reductase, tentatively called sedoheptulose reductase, in volemitol-containing Primula species, and propose it as responsible for the biosynthesis of volemitol in planta. Using enzyme extracts from polyanthus leaves, we determined that sedoheptulose reductase has a pH optimum between 7.0 and 8.0, a very high substrate specificity, and displays saturable concentration dependence for both sedoheptulose (apparent Km = 21 mm) and NADPH (apparent Km = 0.4 mm). Our results suggest that volemitol is important in certain Primula species as a photosynthetic product, phloem translocate, and storage carbohydrate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Filamentous fungi are a large group of diverse and economically important microorganisms. Large-scale gene disruption strategies developed in budding yeast are not applicable to these organisms because of their larger genomes and lower rate of targeted integration (TI) during transformation. We developed transposon-arrayed gene knockouts (TAGKO) to discover genes and simultaneously create gene disruption cassettes for subsequent transformation and mutant analysis. Transposons carrying a bacterial and fungal drug resistance marker are used to mutagenize individual cosmids or entire libraries in vitro. Cosmids are annotated by DNA sequence analysis at the transposon insertion sites, and cosmid inserts are liberated to direct insertional mutagenesis events in the genome. Based on saturation analysis of a cosmid insert and insertions in a fungal cosmid library, we show that TAGKO can be used to rapidly identify and mutate genes. We further show that insertions can create alterations in gene expression, and we have used this approach to investigate an amino acid oxidation pathway in two important fungal phytopathogens.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biological bases of learning and memory are being revealed today with a wide array of molecular approaches, most of which entail the analysis of dysfunction produced by gene disruptions. This perspective derives both from early “genetic dissections” of learning in mutant Drosophila by Seymour Benzer and colleagues and from earlier behavior-genetic analyses of learning and in Diptera by Jerry Hirsch and coworkers. Three quantitative-genetic insights derived from these latter studies serve as guiding principles for the former. First, interacting polygenes underlie complex traits. Consequently, learning/memory defects associated with single-gene mutants can be quantified accurately only in equilibrated, heterogeneous genetic backgrounds. Second, complex behavioral responses will be composed of genetically distinct functional components. Thus, genetic dissection of complex traits into specific biobehavioral properties is likely. Finally, disruptions of genes involved with learning/memory are likely to have pleiotropic effects. As a result, task-relevant sensorimotor responses required for normal learning must be assessed carefully to interpret performance in learning/memory experiments. In addition, more specific conclusions will be obtained from reverse-genetic experiments, in which gene disruptions are restricted in time and/or space.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In 1859, in On the Origin of Species, Darwin broached what he regarded to be the most vexing problem facing his theory of evolution—the lack of a rich fossil record predating the rise of shelly invertebrates that marks the beginning of the Cambrian Period of geologic time (≈550 million years ago), an “inexplicable” absence that could be “truly urged as a valid argument” against his all embracing synthesis. For more than 100 years, the “missing Precambrian history of life” stood out as one of the greatest unsolved mysteries in natural science. But in recent decades, understanding of life's history has changed markedly as the documented fossil record has been extended seven-fold to some 3,500 million years ago, an age more than three-quarters that of the planet itself. This long-sought solution to Darwin's dilemma was set in motion by a small vanguard of workers who blazed the trail in the 1950s and 1960s, just as their course was charted by a few pioneering pathfinders of the previous century, a history of bold pronouncements, dashed dreams, search, and final discovery.