943 resultados para Time-Fractional Diffusion-Wave Problem


Relevância:

30.00% 30.00%

Publicador:

Resumo:

It is shown that Bretherton's view of baroclinic instability as the interaction of two counter-propagating Rossby waves (CRWs) can be extended to a general zonal flow and to a general dynamical system based on material conservation of potential vorticity (PV). The two CRWs have zero tilt with both altitude and latitude and are constructed from a pair of growing and decaying normal modes. One CRW has generally large amplitude in regions of positive meridional PV gradient and propagates westwards relative to the flow in such regions. Conversely, the other CRW has large amplitude in regions of negative PV gradient and propagates eastward relative to the zonal flow there. Two methods of construction are described. In the first, more heuristic, method a ‘home-base’ is chosen for each CRW and the other CRW is defined to have zero PV there. Consideration of the PV equation at the two home-bases gives ‘CRW equations’ quantifying the evolution of the amplitudes and phases of both CRWs. They involve only three coefficients describing the mutual interaction of the waves and their self-propagation speeds. These coefficients relate to PV anomalies formed by meridional fluid displacements and the wind induced by these anomalies at the home-bases. In the second method, the CRWs are defined by orthogonality constraints with respect to wave activity and energy growth, avoiding the subjective choice of home-bases. Using these constraints, the same form of CRW equations are obtained from global integrals of the PV equation, but the three coefficients are global integrals that are not so readily described by ‘PV-thinking’ arguments. Each CRW could not continue to exist alone, but together they can describe the time development of any flow whose initial conditions can be described by the pair of growing and decaying normal modes, including the possibility of a super-modal growth rate for a short period. A phase-locking configuration (and normal-mode growth) is possible only if the PV gradient takes opposite signs and the mean zonal wind and the PV gradient are positively correlated in the two distinct regions where the wave activity of each CRW is concentrated. These are easily interpreted local versions of the integral conditions for instability given by Charney and Stern and by Fjørtoft.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The Kelvin Helmholtz (KH) problem, with zero stratification, is examined as a limiting case of the Rayleigh model of a single shear layer whose width tends to zero. The transition of the Rayleigh modal dispersion relation to the KH one, as well as the disappearance of the supermodal transient growth in the KH limit, are both rationalized from the counterpropagating Rossby wave perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of scattering of a time-harmonic acoustic incident plane wave by a sound soft convex polygon. For standard boundary or finite element methods, with a piecewise polynomial approximation space, the computational cost required to achieve a prescribed level of accuracy grows linearly with respect to the frequency of the incident wave. Recently Chandler–Wilde and Langdon proposed a novel Galerkin boundary element method for this problem for which, by incorporating the products of plane wave basis functions with piecewise polynomials supported on a graded mesh into the approximation space, they were able to demonstrate that the number of degrees of freedom required to achieve a prescribed level of accuracy grows only logarithmically with respect to the frequency. Here we propose a related collocation method, using the same approximation space, for which we demonstrate via numerical experiments a convergence rate identical to that achieved with the Galerkin scheme, but with a substantially reduced computational cost.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we consider the problem of time-harmonic acoustic scattering in two dimensions by convex polygons. Standard boundary or finite element methods for acoustic scattering problems have a computational cost that grows at least linearly as a function of the frequency of the incident wave. Here we present a novel Galerkin boundary element method, which uses an approximation space consisting of the products of plane waves with piecewise polynomials supported on a graded mesh, with smaller elements closer to the corners of the polygon. We prove that the best approximation from the approximation space requires a number of degrees of freedom to achieve a prescribed level of accuracy that grows only logarithmically as a function of the frequency. Numerical results demonstrate the same logarithmic dependence on the frequency for the Galerkin method solution. Our boundary element method is a discretization of a well-known second kind combined-layer-potential integral equation. We provide a proof that this equation and its adjoint are well-posed and equivalent to the boundary value problem in a Sobolev space setting for general Lipschitz domains.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The scattering of small amplitude water waves by a finite array of locally axisymmetric structures is considered. Regions of varying quiescent depth are included and their axisymmetric nature, together with a mild-slope approximation, permits an adaptation of well-known interaction theory which ultimately reduces the problem to a simple numerical calculation. Numerical results are given and effects due to regions of varying depth on wave loading and free-surface elevation are presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Baroclinic wave development is investigated for unstable parallel shear flows in the limit of vanishing normal-mode growth rate. This development is described in terms of the propagation and interaction mechanisms of two coherent structures, called counter-propagating Rossby waves (CRWs). It is shown that, in this limit of vanishing normal-mode growth rate, arbitrary initial conditions produce sustained linear amplification of the marginally neutral normal mode (mNM). This linear excitation of the mNM is subsequently interpreted in terms of a resonance phenomenon. Moreover, while the mathematical character of the normal-mode problem changes abruptly as the bifurcation point in the dispersion diagram is encountered and crossed, it is shown that from an initial-value viewpoint, this transition is smooth. Consequently, the resonance interpretation remains relevant (albeit for a finite time) for wavenumbers slightly different from the ones defining cut-off points. The results are further applied to a two-layer version of the classic Eady model in which the upper rigid lid has been replaced by a simple stratosphere.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The African Easterly Jet-Easterly Wave (AEJ-AEW) system was explored in an idealised model. Prescribed zonally symmetric surface temperature and moisture profiles determine the AEJ which becomes established through meridional contrasts in dry and moist convection.As in previous studies, a realistic AEJ developed with only dry convection. Including moist processes, increased its development rate, but reduced its speed and meridional extent. AEWs grew through barotropic-baroclinic conversions. Negative meridional potential vorticity (PV) gradients arose in the zonally symmetric state through the intrusion of the low-PV Saharan boundary layer. Since moist processes strengthened this significantly through diabatically generated PV in the Intertropical Convergence Zone, moist AEWs were three times stronger. Larger barotropic conversions and faster AEJ development increased the moist wave growth-rate. Jet-level and northerly low-level amplitudes grew, but in the moist case the low-level amplitudes weakened as the AEW interacted with convection, consistent with their absence from observations during the peak monsoon. Striking dependencies between the AEJ, AEW and rainfall existed. Two time-scales governed their evolution, depending on the transfer coefficients: (1) the AEJ's replenishment rate influenced by heat fluxes, and (2) the wave growth-rate, by damping, and the slower jet development rate.Moist AEWs were characterized by intermittent growth/decay, with growth preceded by increased mean rainfall and later, weakening AEJs. These dependencies established an internal 8-10-day variability, consistent with intra-seasonal observations of 9-day rainy sequences. This internal variability offers an alternative explanation to the previously proposed external forcing and a new view of the moist AEW life cycle. Copyright © 2009 Royal Meteorological Society

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Diffusive isotopic fractionation factors are important in order to understand natural processes and have practical application in radioactive waste storage and carbon dioxide sequestration. We determined the isotope fractionation factors and the effective diffusion coefficients of chloride and bromide ions during aqueous diffusion in polyacrylamide gel. Diffusion was determined as functions of temperature, time and concentration. The effect of temperature is relatively large on the diffusion coefficient (D) but only small on isotope fractionation. For chlorine, the ratio, D-35cl/D-37cl varied from 1.00128 +/- 0.00017 (1 sigma) at 2 degrees C to 1.00192 +/- 0.00015 at 80 degrees C. For bromine, D-79Br/D-81Br varied from 1.00098 +/- 0.00009 at 2 degrees C to 1.0064 +/- 0.00013 at 21 degrees C and 1.00078 +/- 0.00018 (1 sigma) at 80 degrees C. There were no significant effects on the isotope fractionation due to concentration. The lack of sensitivity of the diffusive isotope fractionation to anything at the most common temperatures (0 to 30 C) makes it particularly valuable for application to understanding processes in geological environments and an important natural tracer in order to understand fluid transport processes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The “butterfly effect” is a popularly known paradigm; commonly it is said that when a butterfly flaps its wings in Brazil, it may cause a tornado in Texas. This essentially describes how weather forecasts can be extremely senstive to small changes in the given atmospheric data, or initial conditions, used in computer model simulations. In 1961 Edward Lorenz found, when running a weather model, that small changes in the initial conditions given to the model can, over time, lead to entriely different forecasts (Lorenz, 1963). This discovery highlights one of the major challenges in modern weather forecasting; that is to provide the computer model with the most accurately specified initial conditions possible. A process known as data assimilation seeks to minimize the errors in the given initial conditions and was, in 1911, described by Bjerkness as “the ultimate problem in meteorology” (Bjerkness, 1911).

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We consider the problem of scattering of time-harmonic acoustic waves by an unbounded sound-soft rough surface. Recently, a Brakhage Werner type integral equation formulation of this problem has been proposed, based on an ansatz as a combined single- and double-layer potential, but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green's function. Moreover, it has been shown in the three-dimensional case that this integral equation is uniquely solvable in the space L-2 (Gamma) when the scattering surface G does not differ too much from a plane. In this paper, we show that this integral equation is uniquely solvable with no restriction on the surface elevation or slope. Moreover, we construct explicit bounds on the inverse of the associated boundary integral operator, as a function of the wave number, the parameter coupling the single- and double-layer potentials, and the maximum surface slope. These bounds show that the norm of the inverse operator is bounded uniformly in the wave number, kappa, for kappa > 0, if the coupling parameter h is chosen proportional to the wave number. In the case when G is a plane, we show that the choice eta = kappa/2 is nearly optimal in terms of minimizing the condition number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

For a nonlocally perturbed half- space we consider the scattering of time-harmonic acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft case, based on a standard ansatz as a combined single-and double-layer potential but replacing the usual fundamental solution of the Helmholtz equation with an appropriate half- space Green's function. Due to the unboundedness of the surface, the integral operators are noncompact. In contrast to the two-dimensional case, the integral operators are also strongly singular, due to the slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In the case when the surface is sufficiently smooth ( Lyapunov) we show that the integral operators are nevertheless bounded as operators on L-2(Gamma) and on L-2(Gamma G) boolean AND BC(Gamma) and that the operators depend continuously in norm on the wave number and on G. We further show that for mild roughness, i.e., a surface G which does not differ too much from a plane, the boundary integral equation is uniquely solvable in the space L-2(Gamma) boolean AND BC(Gamma) and the scattering problem has a unique solution which satisfies a limiting absorption principle in the case of real wave number.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An analytical model is developed for the initial stage of surface wave generation at an air-water interface by a turbulent shear flow in either the air or in the water. The model treats the problem of wave growth departing from a flat interface and is relevant for small waves whose forcing is dominated by turbulent pressure fluctuations. The wave growth is predicted using the linearised and inviscid equations of motion, essentially following Phillips [Phillips, O.M., 1957. On the generation of waves by turbulent wind. J. Fluid Mech. 2, 417-445], but the pressure fluctuations that generate the waves are treated as unsteady and related to the turbulent velocity field using the rapid-distortion treatment of Durbin [Durbin, P.A., 1978. Rapid distortion theory of turbulent flows. PhD thesis, University of Cambridge]. This model, which assumes a constant mean shear rate F, can be viewed as the simplest representation of an oceanic or atmospheric boundary layer. For turbulent flows in the air and in the water producing pressure fluctuations of similar magnitude, the waves generated by turbulence in the water are found to be considerably steeper than those generated by turbulence in the air. For resonant waves, this is shown to be due to the shorter decorrelation time of turbulent pressure in the air (estimated as proportional to 1/Gamma), because of the higher shear rate existing in the air flow, and due to the smaller length scale of the turbulence in the water. Non-resonant waves generated by turbulence in the water, although being somewhat gentler, are still steeper than resonant waves generated by turbulence in the air. Hence, it is suggested that turbulence in the water may have a more important role than previously thought in the initiation of the surface waves that are subsequently amplified by feedback instability mechanisms.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Goal modelling is a well known rigorous method for analysing problem rationale and developing requirements. Under the pressures typical of time-constrained projects its benefits are not accessible. This is because of the effort and time needed to create the graph and because reading the results can be difficult owing to the effects of crosscutting concerns. Here we introduce an adaptation of KAOS to meet the needs of rapid turn around and clarity. The main aim is to help the stakeholders gain an insight into the larger issues that might be overlooked if they make a premature start into implementation. The method emphasises the use of obstacles, accepts under-refined goals and has new methods for managing crosscutting concerns and strategic decision making. It is expected to be of value to agile as well as traditional processes.