941 resultados para Three-dimensional geological-geotechnical model


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Atlantic Multidecadal Variability (AMV) is investigated in a millennial control simulation with the Kiel Climate Model (KCM), a coupled atmosphere–ocean–sea ice model. An oscillatory mode with approximately 60 years period and characteristics similar to observations is identified with the aid of three-dimensional temperature and salinity joint empirical orthogonal function analysis. The mode explains 30 % of variability on centennial and shorter timescales in the upper 2,000 m of the North Atlantic. It is associated with changes in the Atlantic Meridional Overturning Circulation (AMOC) of ±1–2 Sv and Atlantic Sea Surface Temperature (SST) of ±0.2 °C. AMV in KCM results from an out-of-phase interaction between horizontal and vertical ocean circulation, coupled through Irminger Sea convection. Wintertime convection in this region is mainly controlled by salinity anomalies transported by the Subpolar Gyre (SPG). Increased (decreased) dense water formation in this region leads to a stronger (weaker) AMOC after 15 years, and this in turn leads to a weaker (stronger) SPG after another 15 years. The key role of salinity variations in the subpolar North Atlantic for AMV is confirmed in a 1,000 year long simulation with salinity restored to model climatology: No low frequency variations in convection are simulated, and the 60 year mode of variability is absent.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The climatology of ozone produced by the Canadian Middle Atmosphere Model (CMAM) is presented. This three-dimensional global model incorporates the radiative feedbacks of ozone and water vapor calculated on-line with a photochemical module. This module includes a comprehensive gas-phase reaction set and a limited set of heterogeneous reactions to account for processes occurring on background sulphate aerosols. While transport is global, photochemistry is solved from about 400 hPa to the top of the model at ∼95 km. This approach provides a complete and comprehensive representation of transport, emission, and photochemistry of various constituents from the surface to the mesopause region. A comparison of model results with observations indicates that the ozone distribution and variability are in agreement with observations throughout most of the model domain. Column ozone annual variation is represented to within 5–10% of the observations except in the Southern Hemisphere for springtime high latitudes. The vertical ozone distribution is generally well represented by the model up to the mesopause region. Nevertheless, in the upper stratosphere, the model generally underestimates the amount of ozone as well as the latitudinal tilting of ozone isopleths at high latitude. Ozone variability is analyzed and compared with measurements. The comparison shows that the phase and amplitude of the seasonal variation as well as shorter timescale variations are well represented by the model at various latitudes and heights. Finally, the impact of incorporating ozone radiative feedback on the model climatology is isolated. It is found that the incorporation of ozone radiative feedback results in a cooling of ∼8 K in the summer stratopause region, which corrects a warm bias that results when climatological ozone is used.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Since the advent of wide-angle imaging of the inner heliosphere, a plethora of techniques have been developed to investigate the three-dimensional structure and kinematics of solar wind transients, such as coronal mass ejections, from their signatures in single- and multi-spacecraft imaging observations. These techniques, which range from the highly complex and computationally intensive to methods based on simple curve fitting, all have their inherent advantages and limitations. In the analysis of single-spacecraft imaging observations, much use has been made of the fixed φ fitting (FPF) and harmonic mean fitting (HMF) techniques, in which the solar wind transient is considered to be a radially propagating point source (fixed φ, FP, model) and a radially expanding circle anchored at Sun centre (harmonic mean, HM, model), respectively. Initially, we compare the radial speeds and propagation directions derived from application of the FPF and HMF techniques to a large set of STEREO/Heliospheric Imager (HI) observations. As the geometries on which these two techniques are founded constitute extreme descriptions of solar wind transients in terms of their extent along the line of sight, we describe a single-spacecraft fitting technique based on a more generalized model for which the FP and HM geometries form the limiting cases. In addition to providing estimates of a transient’s speed and propagation direction, the self-similar expansion fitting (SSEF) technique provides, in theory, the capability to estimate the transient’s angular extent in the plane orthogonal to the field of view. Using the HI observations, and also by performing a Monte Carlo simulation, we assess the potential of the SSEF technique.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Rafting is one of the important deformation mechanisms of sea ice. This process is widespread in the north Caspian Sea, where multiple rafting produces thick sea ice features, which are a hazard to offshore operations. Here we present a one-dimensional, thermal consolidation model for rafted sea ice. We consider the consolidation between the layers of both a two-layer and a three-layer section of rafted sea ice. The rafted ice is assumed to be composed of layers of sea ice of equal thickness, separated by thin layers of ocean water. Results show that the thickness of the liquid layer reduced asymptotically with time, such that there always remained a thin saline liquid layer. We propose that when the liquid layer is equal to the surface roughness the adjacent layers can be considered consolidated. Using parameters representative of the north Caspian, the Arctic, and the Antarctic, our results show that for a choice of standard parameters it took under 15 h for two layers of rafted sea ice to consolidate. Sensitivity studies showed that the consolidation model is highly sensitive to the initial thickness of the liquid layer, the fraction of salt release during freezing, and the height of the surface asperities. We believe that further investigation of these parameters is needed before any concrete conclusions can be drawn about rate of consolidation of rafted sea ice features.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A stand-alone sea ice model is tuned and validated using satellite-derived, basinwide observations of sea ice thickness, extent, and velocity from the years 1993 to 2001. This is the first time that basin-scale measurements of sea ice thickness have been used for this purpose. The model is based on the CICE sea ice model code developed at the Los Alamos National Laboratory, with some minor modifications, and forcing consists of 40-yr ECMWF Re-Analysis (ERA-40) and Polar Exchange at the Sea Surface (POLES) data. Three parameters are varied in the tuning process: Ca, the air–ice drag coefficient; P*, the ice strength parameter; and α, the broadband albedo of cold bare ice, with the aim being to determine the subset of this three-dimensional parameter space that gives the best simultaneous agreement with observations with this forcing set. It is found that observations of sea ice extent and velocity alone are not sufficient to unambiguously tune the model, and that sea ice thickness measurements are necessary to locate a unique subset of parameter space in which simultaneous agreement is achieved with all three observational datasets.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents single-column model (SCM) simulations of a tropical squall-line case observed during the Coupled Ocean-Atmosphere Response Experiment of the Tropical Ocean/Global Atmosphere Programme. This case-study was part of an international model intercomparison project organized by Working Group 4 ‘Precipitating Convective Cloud Systems’ of the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study. Eight SCM groups using different deep-convection parametrizations participated in this project. The SCMs were forced by temperature and moisture tendencies that had been computed from a reference cloud-resolving model (CRM) simulation using open boundary conditions. The comparison of the SCM results with the reference CRM simulation provided insight into the ability of current convection and cloud schemes to represent organized convection. The CRM results enabled a detailed evaluation of the SCMs in terms of the thermodynamic structure and the convective mass flux of the system, the latter being closely related to the surface convective precipitation. It is shown that the SCMs could reproduce reasonably well the time evolution of the surface convective and stratiform precipitation, the convective mass flux, and the thermodynamic structure of the squall-line system. The thermodynamic structure simulated by the SCMs depended on how the models partitioned the precipitation between convective and stratiform. However, structural differences persisted in the thermodynamic profiles simulated by the SCMs and the CRM. These differences could be attributed to the fact that the total mass flux used to compute the SCM forcing differed from the convective mass flux. The SCMs could not adequately represent these organized mesoscale circulations and the microphysicallradiative forcing associated with the stratiform region. This issue is generally known as the ‘scale-interaction’ problem that can only be properly addressed in fully three-dimensional simulations. Sensitivity simulations run by several groups showed that the time evolution of the surface convective precipitation was considerably smoothed when the convective closure was based on convective available potential energy instead of moisture convergence. Finally, additional SCM simulations without using a convection parametrization indicated that the impact of a convection parametrization in forced SCM runs was more visible in the moisture profiles than in the temperature profiles because convective transport was particularly important in the moisture budget.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The inclusion of the direct and indirect radiative effects of aerosols in high-resolution global numerical weather prediction (NWP) models is being increasingly recognised as important for the improved accuracy of short-range weather forecasts. In this study the impacts of increasing the aerosol complexity in the global NWP configuration of the Met Office Unified Model (MetUM) are investigated. A hierarchy of aerosol representations are evaluated including three-dimensional monthly mean speciated aerosol climatologies, fully prognostic aerosols modelled using the CLASSIC aerosol scheme and finally, initialised aerosols using assimilated aerosol fields from the GEMS project. The prognostic aerosol schemes are better able to predict the temporal and spatial variation of atmospheric aerosol optical depth, which is particularly important in cases of large sporadic aerosol events such as large dust storms or forest fires. Including the direct effect of aerosols improves model biases in outgoing long-wave radiation over West Africa due to a better representation of dust. However, uncertainties in dust optical properties propagate to its direct effect and the subsequent model response. Inclusion of the indirect aerosol effects improves surface radiation biases at the North Slope of Alaska ARM site due to lower cloud amounts in high-latitude clean-air regions. This leads to improved temperature and height forecasts in this region. Impacts on the global mean model precipitation and large-scale circulation fields were found to be generally small in the short-range forecasts. However, the indirect aerosol effect leads to a strengthening of the low-level monsoon flow over the Arabian Sea and Bay of Bengal and an increase in precipitation over Southeast Asia. Regional impacts on the African Easterly Jet (AEJ) are also presented with the large dust loading in the aerosol climatology enhancing of the heat low over West Africa and weakening the AEJ. This study highlights the importance of including a more realistic treatment of aerosol–cloud interactions in global NWP models and the potential for improved global environmental prediction systems through the incorporation of more complex aerosol schemes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The nuclear time-dependent Hartree-Fock model formulated in three-dimensional space, based on the full standard Skyrme energy density functional complemented with the tensor force, is presented. Full self-consistency is achieved by the model. The application to the isovector giant dipole resonance is discussed in the linear limit, ranging from spherical nuclei (16O and 120Sn) to systems displaying axial or triaxial deformation (24Mg, 28Si, 178Os, 190W and 238U). Particular attention is paid to the spin-dependent terms from the central sector of the functional, recently included together with the tensor. They turn out to be capable of producing a qualitative change on the strength distribution in this channel. The effect on the deformation properties is also discussed. The quantitative effects on the linear response are small and, overall, the giant dipole energy remains unaffected. Calculations are compared to predictions from the (quasi)-particle random-phase approximation and experimental data where available, finding good agreement

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Initialising the ocean internal variability for decadal predictability studies is a new area of research and a variety of ad hoc methods are currently proposed. In this study, we explore how nudging with sea surface temperature (SST) and salinity (SSS) can reconstruct the three-dimensional variability of the ocean in a perfect model framework. This approach builds on the hypothesis that oceanic processes themselves will transport the surface information into the ocean interior as seen in ocean-only simulations. Five nudged simulations are designed to reconstruct a 150 years “target” simulation, defined as a portion of a long control simulation. The nudged simulations differ by the variables restored to, SST or SST + SSS, and by the area where the nudging is applied. The strength of the heat flux feedback is diagnosed from observations and the restoring coefficients for SSS use the same time-scale. We observed that this choice prevents spurious convection at high latitudes and near sea-ice border when nudging both SST and SSS. In the tropics, nudging the SST is enough to reconstruct the tropical atmosphere circulation and the associated dynamical and thermodynamical impacts on the underlying ocean. In the tropical Pacific Ocean, the profiles for temperature show a significant correlation from the surface down to 2,000 m, due to dynamical adjustment of the isopycnals. At mid-to-high latitudes, SSS nudging is required to reconstruct both the temperature and the salinity below the seasonal thermocline. This is particularly true in the North Atlantic where adding SSS nudging enables to reconstruct the deep convection regions of the target. By initiating a previously documented 20-year cycle of the model, the SST + SSS nudging is also able to reproduce most of the AMOC variations, a key source of decadal predictability. Reconstruction at depth does not significantly improve with amount of time spent nudging and the efficiency of the surface nudging rather depends on the period/events considered. The joint SST + SSS nudging applied everywhere is the most efficient approach. It ensures that the right water masses are formed at the right surface density, the subsequent circulation, subduction and deep convection further transporting them at depth. The results of this study underline the potential key role of SSS for decadal predictability and further make the case for sustained large-scale observations of this field.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Field observations of new particle formation and the subsequent particle growth are typically only possible at a fixed measurement location, and hence do not follow the temporal evolution of an air parcel in a Lagrangian sense. Standard analysis for determining formation and growth rates requires that the time-dependent formation rate and growth rate of the particles are spatially invariant; air parcel advection means that the observed temporal evolution of the particle size distribution at a fixed measurement location may not represent the true evolution if there are spatial variations in the formation and growth rates. Here we present a zero-dimensional aerosol box model coupled with one-dimensional atmospheric flow to describe the impact of advection on the evolution of simulated new particle formation events. Wind speed, particle formation rates and growth rates are input parameters that can vary as a function of time and location, using wind speed to connect location to time. The output simulates measurements at a fixed location; formation and growth rates of the particle mode can then be calculated from the simulated observations at a stationary point for different scenarios and be compared with the ‘true’ input parameters. Hence, we can investigate how spatial variations in the formation and growth rates of new particles would appear in observations of particle number size distributions at a fixed measurement site. We show that the particle size distribution and growth rate at a fixed location is dependent on the formation and growth parameters upwind, even if local conditions do not vary. We also show that different input parameters used may result in very similar simulated measurements. Erroneous interpretation of observations in terms of particle formation and growth rates, and the time span and areal extent of new particle formation, is possible if the spatial effects are not accounted for.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A three-dimensional time-dependent hydrodynamic and heat transport model of Lake Binaba, a shallow and small dam reservoir in Ghana, emphasizing the simulation of dynamics and thermal structure has been developed. Most numerical studies of temperature dynamics in reservoirs are based on one- or two-dimensional models. These models are not applicable for reservoirs characterized with complex flow pattern and unsteady heat exchange between the atmosphere and water surface. Continuity, momentum and temperature transport equations have been solved. Proper assignment of boundary conditions, especially surface heat fluxes, has been found crucial in simulating the lake’s hydrothermal dynamics. This model is based on the Reynolds Average Navier-Stokes equations, using a Boussinesq approach, with a standard k − ε turbulence closure to solve the flow field. The thermal model includes a heat source term, which takes into account the short wave radiation and also heat convection at the free surface, which is function of air temperatures, wind velocity and stability conditions of atmospheric boundary layer over the water surface. The governing equations of the model have been solved by OpenFOAM; an open source, freely available CFD toolbox. As its core, OpenFOAM has a set of efficient C++ modules that are used to build solvers. It uses collocated, polyhedral numerics that can be applied on unstructured meshes and can be easily extended to run in parallel. A new solver has been developed to solve the hydrothermal model of lake. The simulated temperature was compared against a 15 days field data set. Simulated and measured temperature profiles in the probe locations show reasonable agreement. The model might be able to compute total heat storage of water bodies to estimate evaporation from water surface.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This article presents a detailed study of the application of different additive manufacturing technologies (sintering process, three-dimensional printing, extrusion and stereolithographic process), in the design process of a complex geometry model and its moving parts. The fabrication sequence was evaluated in terms of pre-processing conditions (model generation and model STL SLI), generation strategy and physical model post-processing operations. Dimensional verification of the obtained models was undertook by projecting structured light (optical scan), a relatively new technology of main importance for metrology and reverse engineering. Studies were done in certain manufacturing time and production costs, which allowed the definition of an more comprehensive evaluation matrix of additive technologies.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work deals with the initial applications and formulation of an aniscitropic plastic-damage constitutive model proposed for non-linear analysis of reinforced concrete structures submitted to a loading with change of the sign. The original constitutive model is based on the fundamental hypothesis of energy equivalence between real and continuous medium following the concepts of the Continuum Damage Mechanics. The concrete is assumed as an initial elastic isotropic medium presenting anisotropy, permanent strains and bimodularity (distinct elastic responses whether traction or compression stress states prevail) induced by damage evolution. In order to take into account the bimodularity, two damage tensors governing the rigidity in tension or compression regimes are introduced. Then, some conditions are introduced in the original version of the model in order to simulate the damage unilateral effect. The three-dimensional version of the proposed model is analyzed in order to validate its formulation when compared to micromechanical theory. The one-dimensional version of the model is applied in the analyses of a reinforced concrete beam submitted to a loading with change of the sign. Despite the parametric identification problems, the initial applications show the good performance of the model.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To assess the acquisition of suture skills by training on ethylene-vinyl acetate bench model in novice medical students.METHODS: Sixteen medical students without previous surgery experience (novices) were randomly divided into two groups. During one hour group A trained sutures on ethylene-vinyl acetate (EVA) bench model with feedback of instructors, while group B (control) received a faculty-directed training based on books and instructional videos. All students underwent a both pre-and post-tests to perform two-and three-dimensional sutures on ox tongue. All recorded performances were evaluated by two blinded evaluators, using the Global Rating Scale.RESULTS: Although both groups have had a better performance (p<0.05) in the post-test when compared with the pre-test, the analysis of post-test showed that group A (EVA) had a better performance (p<0.05) when compared with group B (control).CONCLUSION: The ethylene vinyl acetate bench model allowed the novice students to acquire suture skills faster when compared to the traditional model of teaching.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this beginning of the XXI century, the Geology moves for new ways that demand a capacity to work with different information and new tools. It is within this context that the analog characterization has important in the prediction and understanding the lateral changes in the geometry and facies distribution. In the present work was developed a methodology for integration the geological and geophysical data in transitional recent deposits, the modeling of petroliferous reservoirs, the volume calculation and the uncertainties associate with this volume. For this purpose it was carried planialtimetric and geophysics (Ground Penetrating Radar) surveys in three areas of the Parnaíba River. With this information, it was possible to visualize the overlap of different estuary channels and make the delimitation of the channel geometry (width and thickness). For three-dimensional visualization and modeling were used two of the main reservoirs modeling software. These studies were performed with the collected parameters and the data of two reservoirs. The first was created with the Potiguar Basin wells data existents in the literature and corresponding to Açu IV unit. In the second case was used a real database of the Northern Sea. In the procedures of reservoirs modeling different workflows were created and generated five study cases with their volume calculation. Afterwards an analysis was realized to quantify the uncertainties in the geological modeling and their influence in the volume. This analysis was oriented to test the generating see and the analogous data use in the model construction