921 resultados para Third ventricle


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The usually reserved and shy scholar made a name for himself at Lincoln; joining the Alpha Phi Alpha social fraternity and becoming a member of the History Club and the Student Government, where he served as President for his senior class.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple human skeletal and craniosynostosis disorders, including Crouzon, Pfeiffer, Jackson–Weiss, and Apert syndromes, result from numerous point mutations in the extracellular region of fibroblast growth factor receptor 2 (FGFR2). Many of these mutations create a free cysteine residue that potentially leads to abnormal disulfide bond formation and receptor activation; however, for noncysteine mutations, the mechanism of receptor activation remains unclear. We examined the effect of two of these mutations, W290G and T341P, on receptor dimerization and activation. These mutations resulted in cellular transformation when expressed as FGFR2/Neu chimeric receptors. Additionally, in full-length FGFR2, the mutations induced receptor dimerization and elevated levels of tyrosine kinase activity. Interestingly, transformation by the chimeric receptors, dimerization, and enhanced kinase activity were all abolished if either the W290G or the T341P mutation was expressed in conjunction with mutations that eliminate the disulfide bond in the third immunoglobulin-like domain (Ig-3). These results demonstrate a requirement for the Ig-3 cysteine residues in the activation of FGFR2 by noncysteine mutations. Molecular modeling also reveals that noncysteine mutations may activate FGFR2 by altering the conformation of the Ig-3 domain near the disulfide bond, preventing the formation of an intramolecular bond. This allows the unbonded cysteine residues to participate in intermolecular disulfide bonding, resulting in constitutive activation of the receptor.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Synapsins are a family of neuron-specific synaptic vesicle-associated phosphoproteins that have been implicated in synaptogenesis and in the modulation of neurotransmitter release. In mammals, distinct genes for synapsins I and II have been identified, each of which gives rise to two alternatively spliced isoforms. We have now cloned and characterized a third member of the synapsin gene family, synapsin III, from human DNA. Synapsin III gives rise to at least one protein isoform, designated synapsin IIIa, in several mammalian species. Synapsin IIIa is associated with synaptic vesicles, and its expression appears to be neuron-specific. The primary structure of synapsin IIIa conforms to the domain model previously described for the synapsin family, with domains A, C, and E exhibiting the highest degree of conservation. Synapsin IIIa contains a novel domain, termed domain J, located between domains C and E. The similarities among synapsins I, II, and III in domain organization, neuron-specific expression, and subcellular localization suggest a possible role for synapsin III in the regulation of neurotransmitter release and synaptogenesis. The human synapsin III gene is located on chromosome 22q12–13, which has been identified as a possible schizophrenia susceptibility locus. On the basis of this localization and the well established neurobiological roles of the synapsins, synapsin III represents a candidate gene for schizophrenia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystal structure of raite was solved and refined from data collected at Beamline Insertion Device 13 at the European Synchrotron Radiation Facility, using a 3 × 3 × 65 μm single crystal. The refined lattice constants of the monoclinic unit cell are a = 15.1(1) Å; b = 17.6(1) Å; c = 5.290(4) Å; β = 100.5(2)°; space group C2/m. The structure, including all reflections, refined to a final R = 0.07. Raite occurs in hyperalkaline rocks from the Kola peninsula, Russia. The structure consists of alternating layers of a hexagonal chicken-wire pattern of 6-membered SiO4 rings. Tetrahedral apices of a chain of Si six-rings, parallel to the c-axis, alternate in pointing up and down. Two six-ring Si layers are connected by edge-sharing octahedral bands of Na+ and Mn3+ also parallel to c. The band consists of the alternation of finite Mn–Mn and Na–Mn–Na chains. As a consequence of the misfit between octahedral and tetrahedral elements, regions of the Si–O layers are arched and form one-dimensional channels bounded by 12 Si tetrahedra and 2 Na octahedra. The channels along the short c-axis in raite are filled by isolated Na(OH,H2O)6 octahedra. The distorted octahedrally coordinated Ti4+ also resides in the channel and provides the weak linkage of these isolated Na octahedra and the mixed octahedral tetrahedral framework. Raite is structurally related to intersilite, palygorskite, sepiolite, and amphibole.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

p53 tumor suppressor protein negatively regulates cell growth, mainly through the transactivation of its downstream target genes. As a sequence-specific DNA binding transcription factor, p53 specifically binds to a 20-bp consensus motif 5′-PuPuPuC(A/T) (T/A)GPyPyPyPuPuPuC(A/T)(T/A)GPyPyPy-3′. We have now identified, partially purified, and characterized an additional ≈40-kDa nuclear protein, p53CP (p53 competing protein), that specifically binds to the consensus p53 binding sites found in several p53 downstream target genes, including Waf-1, Gadd45, Mdm2, Bax, and RGC. The minimal sequence requirement for binding is a 14-bp motif, 5′-CTTGCTTGAACAGG-3′ [5′-C(A/T)(T/A)GPyPyPyPuPuPuC(A/T)(T/A)G-3′], which includes the central nucleotides of the typical p53 binding site with one mismatch. p53CP and p53 (complexed with antibody) showed a similar binding specificity to Waf-1 site but differences in Gadd45 and T3SF binding. Like p53, p53CP also binds both double- and single-stranded DNA oligonucleotides. Important to note, cell cycle blockers and DNA damaging reagents, which induce p53 binding activity, were found to inhibit p53CP binding in p53-positive, but not in p53-negative, cells. This finding suggested a p53-dependent coordinate regulation of p53 and p53CP in response to external stimuli. p53CP therefore could be a third member of the p53 family, in addition to p53 and p73, a newly identified p53 homolog. p53CP, if sequestering p53 from its DNA binding sites through competitive binding, may provide a novel mechanism of p53 inactivation. Alternatively, p53CP may have p53-like functions by binding and transactivating p53 downstream target genes. Cloning of the p53CP gene ultimately will resolve this issue.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper describes three distinct estrogen receptor (ER) subtypes: ERα, ERβ, and a unique type, ERγ, cloned from a teleost fish, the Atlantic croaker Micropogonias undulatus; the first identification of a third type of classical ER in vertebrate species. Phylogenetic analysis shows that ERγ arose through gene duplication from ERβ early in the teleost lineage and indicates that ERγ is present in other teleosts, although it has not been recognized as such. The Atlantic croaker ERγ shows amino acid differences in regions important for ligand binding and receptor activation that are conserved in all other ERγs. The three ER subtypes are genetically distinct and have different distribution patterns in Atlantic croaker tissues. In addition, ERβ and ERγ fusion proteins can each bind estradiol-17β with high affinity. The presence of three functional ERs in one species expands the role of ER multiplicity in estrogen signaling systems and provides a unique opportunity to investigate the dynamics and mechanisms of ER evolution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Lysyl hydroxylase (EC 1.14.11.4), a homodimer, catalyzes the formation of hydroxylysine in collagens. Recently, an isoenzyme termed lysyl hydroxylase 2 has been cloned from human sources [M. Valtavaara, H. Papponen, A.-M. Pirttilä, K. Hiltunen, H. Helander and R. Myllylä (1997) J. Biol. Chem. 272, 6831–6834]. We report here on the cloning of a third human lysyl hydroxylase isoenzyme, termed lysyl hydroxylase 3. The cDNA clones encode a 738 amino acid polypeptide, including a signal peptide of 24 residues. The overall amino acid sequence identity between the processed human lysyl hydroxylase 3 and 1 polypeptides is 59%, and that between the processed lysyl hydroxylase 3 and 2 polypeptides is 57%, whereas the identity to the processed Caenorhabditis elegans polypeptide is only 45%. All four recently identified critical residues at the catalytic site, two histidines, one aspartate, and one arginine, are conserved in all these polypeptides. The mRNA for lysyl hydroxylase 3 was found to be expressed in a variety of tissues, but distinct differences appear to exist in the expression patterns of the three isoenzyme mRNAs. Recombinant lysyl hydroxylase 3 expressed in insect cells by means of a baculovirus vector was found to be more soluble than lysyl hydroxylase 1 expressed in the same cell type. No differences in catalytic properties were found between the recombinant lysyl hydroxylase 3 and 1 isoenzymes. Deficiency in lysyl hydroxylase 1 activity is known to cause the type VI variant of the Ehlers–Danlos syndrome, and it is therefore possible that deficiency in lysyl hydroxylase 3 activity may lead to some other variant of this syndrome or to some other heritable connective tissue disorder.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pre-mRNA splicing requires the bridging of the 5′ and 3′ ends of the intron. In yeast, this bridging involves interactions between the WW domains in the splicing factor PRP40 and a proline-rich domain in the branchpoint binding protein, BBP. Using a proline-rich domain derived from formin (a product of the murine limb deformity locus), we have identified a family of murine formin binding proteins (FBP’s), each of which contains one or more of a special class of tyrosine-rich WW domains. Two of these WW domains, in the proteins FBP11 and FBP21, are strikingly similar to those found in the yeast splicing factor PRP40. We show that FBP21 is present in highly purified spliceosomal complex A, is associated with U2 snRNPs, and colocalizes with splicing factors in nuclear speckle domains. Moreover, FBP21 interacts directly with the U1 snRNP protein U1C, the core snRNP proteins SmB and SmB′, and the branchpoint binding protein SF1/mBBP. Thus, FBP21 may play a role in cross-intron bridging of U1 and U2 snRNPs in the mammalian A complex.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The coupling of agonist-activated seven transmembrane domain receptors to G proteins is known to involve the amino-terminal region of their third cytoplasmic loop. Analysis of the amino acids in this region of the rat type in angiotensin (AT1a) receptor identified Leu-222 as an essential residue in receptor activation by the physiological agonist, angiotensin II (Ang II). Nonpolar replacements for Leu-222 yielded functionally intact AT1 receptors, while polar or charged residues caused progressive impairment of Ang II-induced inositol phosphate generation. The decrease in agonist-induced signal generation was associated with a parallel reduction of receptor internalization, and was most pronounced for the Lys-222 mutant receptor. Although this mutant showed normal binding of the peptide antagonist, [Sar1,Ile6]Ang II, its affinity for Ang II was markedly reduced, consistent with its inability to adopt the high-affinity conformation. A search revealed that many Gq-coupled receptors contain an apolar amino acid (frequently leucine) in the position corresponding to Leu-222 of the AT1 receptor. These findings suggest that such a conserved apolar residue in the third intracellular loop is a crucial element in the agonist-induced activation of the AT1 and possibly many other G protein-coupled receptors.