906 resultados para Thermal and photochemical transformations
Resumo:
Phytoplankton productivity is the common and important factor being considered in determining the overall status of a given body of water. This is because they are found at the base of an energy or food chain, being the basic source of primary food in a given aquatic system. Hence, information on their contribution is essential in indicating how much biomass energy will be available to all other living resources in the system. Though the primary productivity of shallow lakes is characterized by mixed populations of phytoplankton and submersed aquatic vegetation in the open water. Lake Choghakhor, is a shallow lake, located in Chaharmahal-Bakhtiyari Province. This lake is the most important ecosystem in the region especially for waterfowl populations, has a recreational value and supports tourism and fisheries. During last decade Choghakhor has been influenced by some man-made impacts such as water level fluctuation, agricultural discharge and fish (Cyprinids) introduction causing a serious problem in its trophic states. So water quality for physical, chemical and biological was monitored in five sampling stations, from April 2003 to March 2004. As biological parameters we studied phytoplankton, epiphytic algae, and zooplankton and macrobenthose community structure. Chlorophyll a content for phytoplankton and epiphytes was measured to estimate production of these groups (biomass over time). Also we determined biomasses of submersed macrophytes and macrobenthose and primary production of phytoplankton (dark and light bottles technique) to estimate fish production. The results of this study showed Lake Choghakhor did not undergo stable thermal and oxygen stratification, and the lake water was mixed throughout the study (the lake mixing regime is polymictic). Now submerged plants especially Myriophyllum spicatum has covered almost the entire lake and dense macrophyte beds (Polygonom amphibium), located on the east southern end of the lake appear to act as a sink for these nutrients. Lake Choghakhor appeared to be in a macrophyte dominated clear water state with low TP (annual mean: 24± 15μg.l-1) and chlorophyll a (annual mean: 3±1.28μg.l-1) concentrations and very high Secchi depth. The grazing pressure of dominant pelagic filtering zooplankton Daphnia longespina did not seem to be significant in determining the low phytoplankton crop expressed as chlorophyll a. We expect that sequestering of nutrients by submerged plants and associated epiphytes are the dominant stabilizing mechanisms suppressing the phytoplankton crop of Lake Choghakhor.
Resumo:
During its lifetime in the core, the cladding of an Accelerator Driven Subcritical Reactor (ADSR) fuel pin is expected to experience variable stresses due to frequent interruptions in the accelerator proton beam. This paper investigates the thermal fatigue damage in the cladding due to repetitive and unplanned beam interruptions under certain operational conditions. Beam trip data was obtained for four operating high power proton accelerators, among which the Spallation Neutron Source (SNS) superconducting accelerator was selected for further analysis. 9Cr-1Mo-Nb-V (T91) steel was selected as the cladding material because of its proven compatibility with proposed ADSR design concepts. The neutronic, thermal and stress analyses were performed using the PTS-ADS, a code that has been specifically developed for studying the dynamic response to beam-induced transients in accelerator driven subcritical systems. The lifetime of the fuel cladding in the core was estimated for three levels of allowed pin power and specific operating conditions. © 2012 Elsevier Ltd. All rights reserved.
Resumo:
This article describes the application of the light-attenuation technique as a tool for measuring dilution occurring in buoyancy-driven flows. Whilst this technique offers the experimental fluid dynamicist the ability to make rapid synoptic buoyancy measurements non-intrusively, its successful application requires careful selection of chemical dye, dye concentration, illumination and optics. After establishing the advantages offered by methylene blue as a dyeing agent, we assess the accuracy of buoyancy measurements made using this technique compared with direct measurements made with density meters. Density measurements obtained using light-attenuation differ from those obtained using the density meter by typically less than 3%. It is hoped that this article will provide useful advice with regards to its implementation in the field of buoyancy-driven flows. © 2011 Elsevier Inc.
Resumo:
We present a novel method for controlling the growth orientation of individual carbon nanotube (CNT) microstructures on a silicon wafer substrate. Our method controls the CNT forest orientation by patterning the catalyst layer used in the CNTs growth on slanted KOH edges. The overlap of catalyst area on the horizontal bottom and sloped sidewall surfaces of the KOH-etched substrate enables precise variation of the growth direction. These inclined structures can profit from the outstanding mechanical, electrical, thermal, and optical properties of CNTs and can therefore improve the performance of several MEMS devices. Inclined CNT microstructures could for instance be used as cantilever springs in probe card arrays, as tips in dip-pen lithography, and as sensing element in advanced transducers. ©2009 IEEE.
Resumo:
Increasing demand for energy and continuing increase in environmental as well as financial cost of use of fossil fuels drive the need for utilization of fuels from sustainable sources for power generation. Development of fuel-flexible combustion systems is vital in enabling the use of sustainable fuels. It is also important that these sustainable combustion systems meet the strict governmental emission legislations. Biogas is considered as one of the viable sustainable fuels that can be used to power modern gas turbines: However, the change in chemical, thermal and transport properties as well as change in Wobbe index due to the variation of the fuel constituents can have a significant effect on the performance of the combustor. It is known that the fuel properties have strong influence on the dynamic flame response; however there is a lack of detailed information regarding the effect of fuel compositions on the sensitivity of the flames subjected to flow perturbations. In this study, we describe an experimental effort investigating the response of premixed biogas-air turbulent flames with varying proportions of CH4 and CO2 to velocity perturbations. The flame was stabilized using a centrally placed conical bluff body. Acoustic perturbations were imposed to the flow using loud speakers. The flame dynamics and the local heat release rate of these acoustically excited biogas flames were studied using simultaneous measurements of OH and H2CO planar laser induced fluorescence. OH* chemiluminescence along with acoustic pressure measurements were also recorded to estimate the total flame heat release modulation and the velocity fluctuations. The measurements were carried out by keeping the theoretical laminar flame speed constant while varying the bulk velocity and the fuel composition. The results indicate that the flame sensitivity to perturbations increased with increased dilution of CH4 by CO2 at low amplitude forcing, while at high amplitude forcing conditions the magnitude of the flame response was independent of dilution.
Resumo:
BGCore is a software package for comprehensive computer simulation of nuclear reactor systems and their fuel cycles. The BGCore interfaces Monte Carlo particles transport code MCNP4C with a SARAF module - an independently developed code for calculating in-core fuel composition and spent fuel emissions following discharge. In BGCore system, depletion coupling methodology is based on the multi-group approach that significantly reduces computation time and allows tracking of large number of nuclides during calculations. In this study, burnup calculation capabilities of BGCore system were validated against well established and verified, computer codes for thermal and fast spectrum lattices. Very good agreement in k eigenvalue and nuclide densities prediction was observed for all cases under consideration. In addition, decay heat prediction capabilities of the BGCore system were benchmarked against the most recent edition of ANS Standard methodology for UO2 fuel decay power prediction in LWRs. It was found that the difference between ANS standard data and that predicted by the BGCore does not exceed 5%.
Resumo:
Coupled Monte Carlo depletion systems provide a versatile and an accurate tool for analyzing advanced thermal and fast reactor designs for a variety of fuel compositions and geometries. The main drawback of Monte Carlo-based systems is a long calculation time imposing significant restrictions on the complexity and amount of design-oriented calculations. This paper presents an alternative approach to interfacing the Monte Carlo and depletion modules aimed at addressing this problem. The main idea is to calculate the one-group cross sections for all relevant isotopes required by the depletion module in a separate module external to Monte Carlo calculations. Thus, the Monte Carlo module will produce the criticality and neutron spectrum only, without tallying of the individual isotope reaction rates. The onegroup cross section for all isotopes will be generated in a separate module by collapsing a universal multigroup (MG) cross-section library using the Monte Carlo calculated flux. Here, the term "universal" means that a single MG cross-section set will be applicable for all reactor systems and is independent of reactor characteristics such as a neutron spectrum; fuel composition; and fuel cell, assembly, and core geometries. This approach was originally proposed by Haeck et al. and implemented in the ALEPH code. Implementation of the proposed approach to Monte Carlo burnup interfacing was carried out through the BGCORE system. One-group cross sections generated by the BGCORE system were compared with those tallied directly by the MCNP code. Analysis of this comparison was carried out and led to the conclusion that in order to achieve the accuracy required for a reliable core and fuel cycle analysis, accounting for the background cross section (σ0) in the unresolved resonance energy region is essential. An extension of the one-group cross-section generation model was implemented and tested by tabulating and interpolating by a simplified σ0 model. A significant improvement of the one-group cross-section accuracy was demonstrated.
Resumo:
This work presents simplified 242mAm-fueled nuclear battery concept design featuring direct fission products energy conversion and passive heat rejection. Optimization of the battery operating characteristics and dimensions was performed. The calculations of power conversion efficiency under thermal and nuclear design constraints showed that 5.6 W e/kg power density can be achieved, which corresponds to conversion efficiency of about 4%. A system with about 190 cm outer radius translates into 17.8 MT mass per 100 kW e. Total power scales linearly with the outer surface area of the battery through which the residual heat is rejected. Tradeoffs between the battery lifetime, mass, dimensions, power rating, and conversion efficiency are presented and discussed. The battery can be used in a wide variety of interplanetary missions with power requirements in the kW to MW range. Copyright © 2007 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The work presents simplified242mAm fueled nuclear battery concept design featuring direct fission products energy conversion and passive heat rejection. The performed calculations of power conversion efficiency under thermal and nuclear design constraints showed that 14 W/kg power density can be achieved, which corresponds to conversion efficiency of about 6%. Total power of the battery scales linearly with its surface area. 144 kW of electric power can be produced by a nuclear battery with an external radius of about 174 cm and total mass of less than 10300 kg. The mass of242m Am fuel for such a system is 3200 gram.
Resumo:
In order to guarantee a sustainable supply of future energy demand without compromising the environment, some actions for a substantial reduction of CO 2 emissions are nowadays deeply analysed. One of them is the improvement of the nuclear energy use. In this framework, innovative gas-cooled reactors (both thermal and fast) seem to be very attractive from the electricity production point of view and for the potential industrial use along the high temperature processes (e.g., H 2 production by steam reforming or I-S process). This work focuses on a preliminary (and conservative) evaluation of possible advantages that a symbiotic cycle (EPR-PBMR-GCFR) could entail, with special regard to the reduction of the HLW inventory and the optimization of the exploitation of the fuel resources. The comparison between the symbiotic cycle chosen and the reference one (once-through scenario, i.e., EPR-SNF directly disposed) shows a reduction of the time needed to reach a fixed reference level from ∼170000 years to ∼1550 years (comparable with typical human times and for this reason more acceptable by the public opinion). In addition, this cycle enables to have a more efficient use of resources involved: the total electric energy produced becomes equal to ∼630 TWh/year (instead of only ∼530 TWh/year using only EPR) without consuming additional raw materials. © 2009 Barbara Vezzoni et al.
Resumo:
The quantum wave function and the corresponding energy levels of the dissipative mesoscopic capacitance coupling circuits are obtained by using unitary and linear transformations. The quantum fluctuation of charge and current in an arbitrary eigenstate of the system have been also given. The results show that the fluctuation of charge and current depends on not only the eigenstate but also the electronic device parameters.
Resumo:
在大气CO2升高和氮(N)沉降增加等全球变化背景下,N元素对生态系统碳(C)、N元素周转过程的影响开始引起越来越多的关注。作为陆地生态系统C库重要组成部分的森林土壤,也逐渐成为研究的重点之一。 本文选择长白山地区典型森林生态系统表层土壤和凋落物,利用人工施N,在实验室控制条件下,模拟N沉降对森林土壤表层C、N元素周转过程影响。旨在从微观上揭示N沉降对凋落物和土壤表层腐殖质分解过程中C、N元素周转过程和土壤C库的影响,主要结论如下: (1) 外源N输入加快了凋落物早期的分解。阔叶树种(岳桦 Betula ermanii、蒙古栎 Quercus mongolica、椴树 Tilia amurensis)的凋落物的分解速度明显快于针叶树种(红松 Pinus koraiensis、鱼鳞云杉 Picea jezoensis)。凋落物的木质素含量是控制其分解速度的主导因子。 (2) N添加对凋落物可溶性有机C(DOC)淋失没有显著影响。DOC淋失主要受凋落物基本性质的控制。阔叶树种的凋落物DOC淋失量明显高于针叶树种。 (3) 不同植被下的土壤性质和C、N周转过程有较大的差异,岳桦林下土壤的微生物生物量和N矿化速率都显著高于暗针叶林,而土壤的C矿化量却低于暗针叶林。岳桦林土壤的DOC和DON淋失量也高于暗针叶林。 (4) N添加显著降低了森林表层土壤的呼吸速率。外加氮对土壤DOC淋失的影响存在一个平衡点,过高的N输入可能加快土壤中DOC的分解速度,降低DOC的淋失量。 研究结果表明,尽管长白山森林生态系统还没有达到“N饱和”,但不断升高的N沉降水平将对长白山典型森林生态系统土壤的C、N元素的周转过程产生较大的影响。但要全面评估N沉降对长白山地区森林土壤C库的影响,还需在野外进行长期定位研究。
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
Structural relaxation by isothermal annealing below the glass transition temperature is conducted on a Zr64.13Cu15.75Ni10.12Al10 bulk metallic glass. The effect of structural relaxation on thermal and mechanical properties was investigated by differential scanning calorimetry and instrumented nanoindentation. The recovery of the enthalpy in the DSC curves indicates that thermally unstable defects were annihilated through structural relaxation. During nanoindentation, the structural relaxation did not have a significant influence on the serrated plastic flow behavior. However, Structural relaxation shows an obvious effect in increasing both the hardness and elastic modulus, which is attributed to the annihilation of thermally unstable defects that resulted from the relaxation.
Resumo:
Synthesis of segmented all-Pt nanowires is achieved by a template-assisted method. The combination of a suitably chosen electrolyte/template system with pulse-reverse electrodeposition allows the formation of well-defined segments linked to nanowires. Manipulation of the morphology is obtained by controlling the electrokinetie effects on the local electrolyte distribution inside the nanochannels during the nanowire growth process, allowing a deviation from the continuously cylindrical geometry given by the nanoporous template. The length of the segments can be adjusted as a function of the cathodic pulse duration. Applying constant pulses leads to segments with homogeneous shape and dimensions along most of the total wire length. X-ray diffraction demonstrates that the preferred crystallite orientation of the polycrystalline wires varies with the average segment length. The results are explained considering transitions in texture formation with increasing thickness of the electrodeposit. A mechanism of segment formation is proposed based on structural characterizations. Nanowires with controlled segmented morphology are of great technological importance, because of the possibility to precisely control their substructure as a means of tuning their electrical, thermal, and optical properties. The concept we present in this work for electrodeposited platinum and track-etched polycarbonate membranes can be applied to other selected materials as well as templates and constitutes a general method to controlled nanostructuring and synthesis of shape controlled nanostructures.