973 resultados para Therapeutics, Suggestive.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: Heparin therapy may be effective in steroid resistant inflammatory bowel disease.

AIM: A randomized pilot study, to compare unfractionated heparin as a first-line therapy with corticosteroids in colonic inflammatory bowel disease.

METHODS: Twenty patients with severe inflammatory bowel disease (ulcerative colitis, n=17; Crohn's colitis, n=3) were randomized to either intravenous heparin for 5 days, followed by subcutaneous heparin for 5 weeks (n=8), or high-dose intravenous hydrocortisone for 5 days followed by oral prednisolone 40 mg daily, reducing by 5 mg per day each week (n=12). After 5 days, non-responders in each treatment group were commenced on combination therapy. Response to therapy was monitored by: clinical disease activity (ulcerative colitis: Truelove and Witt Index; Crohn's colitis: Harvey and Bradshaw Index), stool frequency, serum C-reactive protein and alpha1 acid glycoprotein, endoscopic and histopathological grading.

RESULTS: The response rates were similar in both treatment groups: clinical activity index (heparin vs. steroid; 75% vs. 67%; P=0.23), stool frequency (75% vs. 67%; P=0.61), endoscopic (75% vs. 67%; P=0.4) and histopathological grading (63% vs. 50%; P=0.67). Both treatments were well-tolerated with no serious adverse events.

CONCLUSION: Heparin as a first line therapy is as effective as corticosteroids in the treatment of colonic inflammatory bowel disease. Large multicentre randomized comparative studies are required to determine the role of heparin in the management of inflammatory bowel disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND: While the discovery of new drugs is a complex, lengthy and costly process, identifying new uses for existing drugs is a cost-effective approach to therapeutic discovery. Connectivity mapping integrates gene expression profiling with advanced algorithms to connect genes, diseases and small molecule compounds and has been applied in a large number of studies to identify potential drugs, particularly to facilitate drug repurposing. Colorectal cancer (CRC) is a commonly diagnosed cancer with high mortality rates, presenting a worldwide health problem. With the advancement of high throughput omics technologies, a number of large scale gene expression profiling studies have been conducted on CRCs, providing multiple datasets in gene expression data repositories. In this work, we systematically apply gene expression connectivity mapping to multiple CRC datasets to identify candidate therapeutics to this disease.

RESULTS: We developed a robust method to compile a combined gene signature for colorectal cancer across multiple datasets. Connectivity mapping analysis with this signature of 148 genes identified 10 candidate compounds, including irinotecan and etoposide, which are chemotherapy drugs currently used to treat CRCs. These results indicate that we have discovered high quality connections between the CRC disease state and the candidate compounds, and that the gene signature we created may be used as a potential therapeutic target in treating the disease. The method we proposed is highly effective in generating quality gene signature through multiple datasets; the publication of the combined CRC gene signature and the list of candidate compounds from this work will benefit both cancer and systems biology research communities for further development and investigations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Colorectal cancer is the second most common cause of cancer-related death in the United States. Recent studies showed that interleukin-8 (IL-8) and its receptors (CXCR1 and CXCR2) are significantly upregulated in both the tumor and its microenvironment, and act as key regulators of proliferation, angiogenesis, and metastasis. Our previous study showed that IL-8 overexpression in colorectal cancer cells triggers the upregulation of the CXCR2-mediated proliferative pathway. The aim of this study was to investigate whether the CXCR2 antagonist, SCH-527123, inhibits colorectal cancer proliferation and if it can sensitize colorectal cancer cells to oxaliplatin both in vitro and in vivo. SCH-527123 showed concentration-dependent antiproliferative effects in HCT116, Caco2, and their respective IL-8-overexpressing variants colorectal cancer cell lines. Moreover, SCH-527123 was able to suppress CXCR2-mediated signal transduction as shown through decreased phosphorylation of the NF-κB/mitogen-activated protein kinase (MAPK)/AKT pathway. These findings corresponded with decreased cell migration and invasion, while increased apoptosis in colorectal cancer cell lines. In vivo results verified that SCH-527123 treatment decreased tumor growth and microvessel density when compared with vehicle-treated tumors. Importantly, these preclinical studies showed that the combination of SCH-527123 and oxaliplatin resulted in a greater decrease in cell proliferation, tumor growth, apoptosis, and angiogenesis that was superior to single-agent treatment. Taken together, these findings suggest that targeting CXCR2 may block tumor proliferation, migration, invasion, and angiogenesis. In addition, CXCR2 blockade may further sensitize colorectal cancer to oxaliplatin treatment.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemotherapies that target thymidylate synthase (TS) continue to see considerable clinical expansion in non-small cell lung cancer (NSCLC). One drawback to TS-targeted therapies is drug resistance and subsequent treatment failure. Novel therapeutic and biomarker-driven strategies are urgently needed. The enzyme deoxyuridine triphosphate nucleotidohydrolase (dUTPase) is reported to protect tumor cells from aberrant misincorporation of uracil during TS inhibition. The goal of this study was to investigate the expression and significance of dUTPase in mediating response to TS-targeted agents in NSCLC. The expression of dUTPase in NSCLC cell lines and clinical specimens was measured by quantitative real-time reverse transcriptase PCR and immunohistochemistry. Using a validated RNA interference approach, dUTPase was effectively silenced in a panel of NSCLC cell lines and response to the fluoropyrimidine fluorodeoxyuridine (FUdR) and the antifolate pemetrexed was analyzed using growth inhibition and clonogenic assays. Apoptosis was analyzed by flow cytometry. Significant variation in the quantity and cellular expression of dUTPase was observed, including clear evidence of overexpression in NSCLC cell line models and tumor specimens at the mRNA and protein level. RNA interference-mediated silencing of dUTPase significantly sensitized NSCLC cells to growth inhibition induced by FUdR and pemetrexed. This sensitization was accompanied by a significant expansion of intracellular dUTP pools and significant decreases in NSCLC cell viability evaluated by clonogenicity and apoptotic analyses. Together, these results strongly suggest that uracil misincorporation is a potent determinant of cytotoxicity to TS inhibition in NSCLC and that inhibition of dUTPase is a mechanism-based therapeutic approach to significantly enhance the efficacy of TS-targeted chemotherapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

For over 40 years, the fluoropyrimidine 5-fluorouracil (5-FU) has remained the central agent in therapeutic regimens employed in the treatment of colorectal cancer and is frequently combined with the DNA-damaging agents oxaliplatin and irinotecan, increasing response rates and improving overall survival. However, many patients will derive little or no benefit from treatment, highlighting the need to identify novel therapeutic targets to improve the efficacy of current 5-FU-based chemotherapeutic strategies. dUTP nucleotidohydrolase (dUTPase) catalyzes the hydrolysis of dUTP to dUMP and PPi, providing substrate for thymidylate synthase (TS) and DNA synthesis and repair. Although dUTP is a normal intermediate in DNA synthesis, its accumulation and misincorporation into DNA as uracil is lethal. Importantly, uracil misincorporation represents an important mechanism of cytotoxicity induced by the TS-targeted class of chemotherapeutic agents including 5-FU. A growing body of evidence suggests that dUTPase is an important mediator of response to TS-targeted agents. In this article, we present further evidence showing that elevated expression of dUTPase can protect breast cancer cells from the expansion of the intracellular uracil pool, translating to reduced growth inhibition following treatment with 5-FU. We therefore report the implementation of in silico drug development techniques to identify and develop small-molecule inhibitors of dUTPase. As 5-FU and the oral 5-FU prodrug capecitabine remain central agents in the treatment of a variety of malignancies, the clinical utility of a small-molecule inhibitor to dUTPase represents a viable strategy to improve the clinical efficacy of these mainstay chemotherapeutic agents.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Tumor recurrence after curative resection remains a major problem in patients with locally advanced colorectal cancer treated with adjuvant chemotherapy. Genetic single-nucleotide polymorphisms (SNP) may serve as useful molecular markers to predict clinical outcomes in these patients and identify targets for future drug development. Recent in vitro and in vivo studies have demonstrated that the plastin genes PLS3 and LCP1 are overexpressed in colon cancer cells and play an important role in tumor cell invasion, adhesion, and migration. Hence, we hypothesized that functional genetic variations of plastin may have direct effects on the progression and prognosis of locally advanced colorectal cancer. We tested whether functional tagging polymorphisms of PLS3 and LCP1 predict time to tumor recurrence (TTR) in 732 patients (training set, 234; validation set, 498) with stage II/III colorectal cancer. The PLS3 rs11342 and LCP1 rs4941543 polymorphisms were associated with a significantly increased risk for recurrence in the training set. PLS3 rs6643869 showed a consistent association with TTR in the training and validation set, when stratified by gender and tumor location. Female patients with the PLS3 rs6643869 AA genotype had the shortest median TTR compared with those with any G allele in the training set [1.7 vs. 9.4 years; HR, 2.84; 95% confidence interval (CI), 1.32-6.1; P = 0.005] and validation set (3.3 vs. 13.7 years; HR, 2.07; 95% CI, 1.09-3.91; P = 0.021). Our findings suggest that several SNPs of the PLS3 and LCP1 genes could serve as gender- and/or stage-specific molecular predictors of tumor recurrence in stage II/III patients with colorectal cancer as well as potential therapeutic targets.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lemur tyrosine kinase-3 (LMTK3) was recently identified as an estrogen receptor (ER)-α modulator related to endocrine therapy resistance, and its polymorphisms rs9989661 (T>C) T/T genotype and rs8108419 (G>A) G/G or A/G genotype predicted improved outcomes in breast cancer. Because different predominant ER distributions link to breast and gastric cancer and little is known of the prognostic role of LMTK3 in gastric cancer, this study was carried out to clarify the prognostic role of these polymorphisms in gastric cancer. One-hundred and sixty-nine Japanese and 137 U.S. patients with localized gastric adenocarcinoma were enrolled. Genomic DNA was extracted from blood or tissue, and all samples were analyzed by PCR-based direct DNA sequencing. Overall, these polymorphisms were not associated with survival in both cohorts. When gender was considered, in multivariate analysis, harboring rs9989661 T/T genotype was associated with disease-free survival [HR, 4.37; 95% confidence interval (CI), 2.08-9.18; P < 0.0001] and overall survival (OS; HR, 3.69; 95% CI, 1.65-8.24; P = 0.0014) in the Japanese males and time to recurrence (HR, 7.29; 95% CI, 1.07-49.80; P = 0.043) in the U.S. females. Meanwhile, harboring rs8108419 G/G genotype was associated with OS in the Japanese females (HR, 3.04; 95% CI, 1.08-8.56; P = 0.035) and the U.S. males (HR, 3.39; 95% CI, 1.31-8.80; P = 0.012). The prognostic role of these polymorphisms may be negative in gastric cancer. These findings suggest that the estrogen pathway may play a prognostic role in patients with gastric cancer but this may be dependent on the regional differences both in physiology and genetic alterations of gastric cancer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Many natural cyclic peptides have potent and potentially useful biological activities. Their use as therapeutic starting points is often limited by the quantities available, the lack of known biological targets and the practical limits on diversification to fine-tune their properties. We report the use of enzymes from the cyanobactin family to heterocyclise and macrocyclise chemically synthesised substrates so as to allow larger-scale syntheses and better control over derivatisation. We have made cyclic peptides containing orthogonal reactive groups, azide or dehydroalanine, that allow chemical diversification, including the use of fluorescent labels that can help in target identification. We show that the enzymes are compatible and efficient with such unnatural substrates. The combination of chemical synthesis and enzymatic transformation could help renew interest in investigating natural cyclic peptides with biological activity, as well as their unnatural analogues, as therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

At the Eighth International London Cough Conference held in London in July 2014, the focus was on the relatively novel concept of cough hypersensitivity syndrome (CHS) as forming the basis of chronic cough. This concept has been formulated following understanding of the neuronal pathways for cough and a realisation that not all chronic cough is usually associated with a cause. The CHS is defined by troublesome coughing triggered by low level of thermal, mechanical or chemical exposure. It also encompasses other symptoms or sensations such as laryngeal hypersensitivity, nasal hypersensitivity and possibly also symptoms related to gastrooesopahgeal reflux. The pathophysiologic basis of the CHS is now being increasingly linked to an enhancement of the afferent pathways of the cough reflex both at the peripheral and central levels. Mechanisms involved include the interactions of inflammatory mechanisms with cough sensors in the upper airways and with neuronal pathways of cough, associated with a central component. Tools for assessing CHS in the clinic need to be developed. New drugs may be developed to control CHS. A roadmap is suggested from the inception of the CHS concept towards the development of newer antitussives at the Symposium.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The host launches an antimicrobial defense program upon infection. A long-held belief is that pathogens prevent host recognition by remodeling their surface in response to different host microenvironments. Yet direct evidence that this happens in vivo is lacking. Here we report that the pathogen Klebsiella pneumoniae modifies one of its surface molecules, the lipopolysaccharide, in the lungs of mice to evade immune surveillance. These in vivo-induced changes are lost in bacteria grown after isolation from the tissues. These lipopolysaccharide modifications contribute to survival in vivo and mediate resistance to colistin, one of the last options to treat multidrug-resistant Klebsiella. This work opens the possibility of designing novel therapeutics targeting the enzymes responsible for the in vivo lipid A pattern.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Therapies that are safe, effective, and not vulnerable to developing resistance are highly desirable to counteract bacterial infections. Host-directed therapeutics is an antimicrobial approach alternative to conventional antibiotics based on perturbing host pathways subverted by pathogens during their life cycle by using host-directed drugs. In this study, we identified and evaluated the efficacy of a panel of host-directed drugs against respiratory infection by nontypeable Haemophilus influenzae (NTHi). NTHi is an opportunistic pathogen that is an important cause of exacerbation of chronic obstructive pulmonary disease (COPD). We screened for host genes differentially expressed upon infection by the clinical isolate NTHi375 by analyzing cell whole-genome expression profiling and identified a repertoire of host target candidates that were pharmacologically modulated. Based on the proposed relationship between NTHi intracellular location and persistence, we hypothesized that drugs perturbing host pathways used by NTHi to enter epithelial cells could have antimicrobial potential against NTHi infection. Interfering drugs were tested for their effects on bacterial and cellular viability, on NTHi-epithelial cell interplay, and on mouse pulmonary infection. Glucocorticoids and statins lacked in vitro and/or in vivo efficacy. Conversely, the sirtuin-1 activator resveratrol showed a bactericidal effect against NTHi, and the PDE4 inhibitor rolipram showed therapeutic efficacy by lowering NTHi375 counts intracellularly and in the lungs of infected mice. PDE4 inhibition is currently prescribed in COPD, and resveratrol is an attractive geroprotector for COPD treatment. Together, these results expand our knowledge of NTHi-triggered host subversion and frame the antimicrobial potential of rolipram and resveratrol against NTHi respiratory infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Bone Mineral Density (BMD) is a highly heritable trait, but genome-wide association studies have identified few genetic risk factors. Epidemiological studies suggest associations between BMD and several traits and diseases, but the nature of the suggestive comorbidity is still unknown. We used a novel genetic pleiotropy-informed conditional False Discovery Rate (FDR) method to identify single nucleotide polymorphisms (SNPs) associated with BMD by leveraging cardiovascular disease (CVD) associated disorders and metabolic traits. By conditioning on SNPs associated with the CVD-related phenotypes, type 1 diabetes, type 2 diabetes, systolic blood pressure, diastolic blood pressure, high density lipoprotein, low density lipoprotein, triglycerides and waist hip ratio, we identified 65 novel independent BMD loci (26 with femoral neck BMD and 47 with lumbar spine BMD) at conditional FDR < 0.01. Many of the loci were confirmed in genetic expression studies. Genes validated at the mRNA levels were characteristic for the osteoblast/osteocyte lineage, Wnt signaling pathway and bone metabolism. The results provide new insight into genetic mechanisms of variability in BMD, and a better understanding of the genetic underpinnings of clinical comorbidity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

'Boar taint' is a strong perspiration-like, urine-like unpleasant odour given off upon heating or cooking of meat from some intact (uncastrated) male pigs. Data from the F(2) generation of a Large White (LW) x Meishan (MS) crossbred population were analysed to detect quantitative trait loci (QTL) for traits associated with boar taint. Fat samples from 178 intact male pigs slaughtered at 85 +/- 5 kg were analysed for the major contributors to boar taint (androstenone, indole and skatole). Fat and lean samples from cooked meat were scored for boar, abnormal and pork flavour and odour by a trained sensory panel (SP). A scan with 117 markers covering the whole genome was performed in the F(2) individuals, together with their F(1) parents and purebred grandparents. At the 5% chromosomal significance threshold (approximately equal to the genome-wide suggestive significance threshold), QTL were detected for the laboratory estimate of androstenone on chromosomes 2, 4, 6, 7 and 9. However, only on chromosome 6 were there QTL for boar flavour (BF) traits in the same or adjacent marker intervals as a QTL for the laboratory estimate of androstenone. On chromosome 14, QTL were detected for the laboratory estimates of indole and skatole, the SP score for skatole and the scores for BF in lean and BF in fat. In all five cases, the MS allele generally increased the estimate or score, compared with the LW allele, but it appeared that desirable and undesirable alleles were present in both breeds. This locus on chromosome 14 has considerable potential for use to reduce the incidence of boar taint, especially if further research can identify the causative polymorphism or strongly associated markers.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: Neutrophil elastase (NE) is a serine protease implicated in the pathogenesis of several respiratory diseases including cystic fibrosis (CF). The presence of free NE in BAL is a predictor of subsequent bronchiectasis in children with CF (Sly et al, 2013, NEJM 368: 1963-1970). Furthermore, children with higher levels of sputum NE activity (NEa) tend to experience a more rapid decline in FEV1 over time even after adjusting for age, gender and baseline FEV1 (Sagel et al, 2012, AJRCCM 186: 857-865). Its detection and quantification in biological samples is however confounded by a lack of robust methodologies. Standard assays using chromogenic or fluorogenic substrates are not specific when added to complex samples containing multiple proteolytic and hydrolytic enzymes. ELISA systems measure total protein levels which can be a mixture of latent, active and protease-inhibitor complexes. We have therefore developed a novel assay (ProteaseTag™ Active NE Immunoassay), which couples an activity dependent NE-Tag with a specific antibody step, resulting in an assay which is both selective and specific for NEa. Aims: To clinically validate ProteaseTag™ Active NE for the detection of free NEa in BAL from children with CF. Methods: A total of 95 paediatric BAL samples [CF (n=76; 44M, 32F) non-CF (n=19; 12M, 7F)] collected through the Study of Host Immunity and Early Lung Disease in CF (SHIELD CF) were analysed for NEa using ProteaseTag™ Active NE (ProAxsis Ltd) and a fluorogenic substrate-based assay utilising Suc-AAPV-AMC (Sigma). IL-8 was measured by ELISA (R&D Systems). Results were analysed to show comparisons in free NEa between CF and non-CF samples alongside correlations with a range of clinical parameters. Results: NEa measured by ProteaseTag™ Active NE correlated significantly with age (r=0.3, p=0.01) and highly significantly with both IL-8 (r=0.4, p=<0.0001) and the absolute neutrophil count (ANC) (r=0.4, p=<0.0001). These correlations were not observed when NEa was measured by the substrate assay even though a significant correlation was found between the two assays (r=0.8, p<0.0001). A trend towards significance was found between NEa in the CF and non-CF groups when measured by ProteaseTag™ Active NE (p=0.07). Highly significant differences were found with the other inflammatory parameters between the 2 groups (IL-8: p=0.0002 and ANC: p=0.006). Conclusion: NEa as a primary efficacy endpoint in clinical trials or as a marker of inflammation within the clinic has been hampered by the lack of a robust and simple to use assay. ProteaseTag™ Active NE has been shown to be a specific and superior tool in the measurement of NEa in paediatric CF BAL samples (supporting data from previous studies using adult CF expectorated samples). The technology is currently being transferred to a lateral flow device for use at Point of Care. Acknowledgements: This work was supported by the National Children’s Research Centre, Dublin (SHIELD CF) and grants from the Medical Research Council and Cystic Fibrosis Foundation Therapeutics.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The efficiency of central nervous system remyelination declines with age. This is in part due to an age-associated decline in the phagocytic removal of myelin debris, which contains inhibitors of oligodendrocyte progenitor cell differentiation. In this study, we show that expression of genes involved in the retinoid X receptor pathway are decreased with ageing in both myelin-phagocytosing human monocytes and mouse macrophages using a combination of in vivo and in vitro approaches. Disruption of retinoid X receptor function in young macrophages, using the antagonist HX531, mimics ageing by reducing myelin debris uptake. Macrophage-specific RXRα (Rxra) knockout mice revealed that loss of function in young mice caused delayed myelin debris uptake and slowed remyelination after experimentally-induced demyelination. Alternatively, retinoid X receptor agonists partially restored myelin debris phagocytosis in aged macrophages. The agonist bexarotene, when used in concentrations achievable in human subjects, caused a reversion of the gene expression profile in multiple sclerosis patient monocytes to a more youthful profile and enhanced myelin debris phagocytosis by patient cells. These results reveal the retinoid X receptor pathway as a positive regulator of myelin debris clearance and a key player in the age-related decline in remyelination that may be targeted by available or newly-developed therapeutics.