901 resultados para Theoretical Development of Triple P
Resumo:
Objetivando avaliar o desenvolvimento relativo dos componentes do peso vivo (PV), dos cortes comerciais e dos tecidos da carcaça, utilizaram-se 40 cabritos Saanen. Os animais foram abatidos ao atingir 5,0; 12,5; 20,0; 27,5 e 35,0 kg de PV e a carcaça foi seccionada em paleta, pescoço, 1ª a 5ª costelas, 6ª a 13ª costelas, peito/fralda, lombo e perna. A perna foi dissecada em ossos, músculos e gordura. Utilizou-se a equação alométrica Y=aXb para estimar o desenvolvimento relativo. O crescimento do tecido ósseo foi precoce, o do tecido muscular intermediário e o da gordura crescimento tardio, uma vez que a gordura subcutânea é depositada mais tardiamente. Os cortes comerciais apresentaram coeficiente de alometria isogônico, com exceção do corte da 6ª a 13ª costelas e do peito/fralda. O desenvolvimento da carcaça e dos não-componentes da carcaça acompanhou o peso de corpo vazio. Cabritos com 35 kg de PV possuem proporção de músculos e relação músculo:osso adequadas, mas apresentam proporção de gordura maior que a observada nos animais abatidos com 20 kg de PV.
Resumo:
O trabalho objetivou avaliar os efeitos de auxinas e giberelinas, combinados e aplicados em pré-colheita no desenvolvimento e na taxa de queda natural de frutos de laranjeira 'Pêra'. Foram utilizadas árvores de laranjeira (Citrus sinensis Osbeck) cultivar Pêra com 5 anos de idade. Os tratamentos foram: GA3 + 2,4-D 12,5mg L-1 de cada; GA3 + 2,4-D 25mg L-1; GA3 + 2,4-D 37,5mg L-1; GA3 + NAA 12,5mg L-1; GA3 + NAA 25mg L-1; GA3 + NAA 37,5mg L-1; NAA + 2,4-D 12,5mg L-1; NAA + 2,4-D 25mg L-1; NAA + 2,4-D 37,5mg L-1 e testemunha (água). Durante todo o período experimental foram realizadas três aplicações a intervalos de 45 dias. As variáveis avaliadas foram: Taxa de queda natural dos frutos (%), comprimento (mm), diâmetro (mm) e massa fresca dos frutos (g). Nenhum dos tratamentos proporcionaram alterações no desenvolvimento final dos frutos, mas reduziram a taxa de queda natural em comparação com a testemunha em até 78,05%, inibindo a abscisão dos frutos em até três meses.
Resumo:
Lettuce mottle virus (LeMoV) and dandelion yellow mosaic virus (DaYMV) infect lettuce in South America and Europe, respectively. LeMoV and DaYMV possess isometric particles, occur at low concentrations in plants and have narrow host ranges. Partial genome sequences of both viruses were obtained using purified viral preparations and universal primers for members of the family Sequiviridae. DaYMV and LeMoV sequences were analyzed and showed identity with other members of the family. Universal primers that detect both viruses and specific primers for LeMoV and DaYMV were designed and used in RT-PCR-based diagnostic assays. These results provide the first molecular data on the LeMoV and DaYMV genomes and suggest that LeMoV is a member of the genus Sequivirus, probably distinct from DaYMV.
Resumo:
The radial mycelial growth of Lentinula edodes (Berk) Pegler, strain LE-96/13, was studied in culture media prepared with organic residues extract, by using substrates prepared with pineapple (Ananas comosus (L.) Merril) crown, Astrocaryum aculeatum Meyer peel, Theobroma grandiflorum Schum shell, Musa sp. (genomic group AAB, subgroup Pacovan) peel, and Musa sp. (genomic group AAB, subgroup Praia) peel, with three supplementation levels with wheat bran (0, 10 and 20%), and incubated at 25 degrees C. The experimental design was totally randomized, in a 5x3 factorial scheme, adding up 15 treatments with 4 repetitions, and each repetition corresponding to a Petri dish. The diameter of the colony was evaluated daily during nine days of incubation. After that period, it was verified that the highest mycelial growth averages of strain LE-96/13 of L. edodes were found in culture media prepared with T. grandiflorum Schum shell (whose supplementation with wheat bran was favorable for Mushroom development) and A. aculeatum Meyer peel (whose supplementation did not favor the mycelial growth of L. edodes in relation to the medium not supplemented).
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N'-ethylene bis(salicylideneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at platinum electrode in acetonitrile/tetrabutylammonium perchlorate by cyclic voltammetry. The voltammetric behavior of the sensor was investigated in 0.5 mol L-1 KCl solution in the absence and presence of molecular oxygen. Thus, with the addition of oxygen to the solution, the increase of cathodic peak current (at -0.25 V vs. saturated calomel electrode (SCE)) of the modified electrode was observed. This result shows that the nickel-salen film on electrode surface promotes the reduction of oxygen. The reaction can be brought about electrochemically, where the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the molecular oxygen in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The Tafel plot analyses have been used to elucidate the kinetics and mechanism of the oxygen reduction. A plot of the cathodic current vs. the dissolved oxygen concentration for chronoamperometry (fixed potential = -0.25 V vs. SCE) at the sensor was linear in the 3.95-9.20 mg L-1 concentration range and the concentration limit was 0.17 mg L-1 O-2. The proposed electrode is useful for the quality control and routine analysis of dissolved oxygen in commercial samples and environmental water. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with a commercial O-2 sensor. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Hollandite-type manganese oxides are nanofibrous crystals with sub-nanometer open tunnels that provide a unique property for sensing applications. Sensor based on hollandite-type manganese oxide was investigated for amperometric detection of potassium. With an operating potential of +0.63 V versus SCE, potassium ions produce oxidation currents at the sensor, which can be exploited for quantitative determinations. The amperometric signals are linearly proportional to potassium ions concentration in the range 2.7 x 10(-4) to 9.1 x 10(-4) Mol l(-1) with a correlation coefficient of 0.9990. The construction and renewal are simple and inexpensive.
Resumo:
In the work described by this paper, we studied the development of a selective potassium ion sensor constituted of a carbon paste electrode modified (CPEM) with a novel KSr(2)Nb(2)O(15). The material KSr(2)Nb(2)O(15) is an oxide with the tetragonal tungsten bronze structure (TTB) type are in forefront both in the area of research as well as in industrial applications. The sensor response to potassium ions was linear in the concentration range 1.26 x 10(-5) at 1.62 x 10(-3) mol L(-1) (E (mV) = 32.7 + 51.1 log [K(+)]). The sensor based KSr(2)Nb(2)O(15), of the TTB-type presented very good potentiometric response, with a slope of 51.1 mV/dec (at 25 degrees C) and detection limit for the potassium ions of 7.27 x 10(-5) mol.L(-1)
Resumo:
An amperometric oxygen sensor based on a polymeric nickel-salen (salen = N,N '-ethylenebis(salicydeneiminato)) film coated platinum electrode was developed. The sensor was constructed by electropolymerization of nickel-salen complex at a platinum electrode in acetonitrile/tetrabuthylamonium perchlorate by cyclic voltammetry. The voltammetric behavior of the modified electrode was investigated in 0.5 mol L-1 KCl solution in the absence and presende of molecular oxygen. A significant increased of cathodic peak current (at -0.20 vs. SCE) of the modified electrode with addition of oxygen to the solution was observed. This result shows that the nickel-salen film on the surface of the electrode promotes the reduction of oxygen. The reaction can be brought about electrochemically where in the nickel(II) complex is first reduced to a nickel(I) complex at the electrode surface. The nickel(I) complex then undergoes a catalytic oxidation by the oxygen molecular in solution back to the nickel(II) complex, which can then be electrochemically re-reduced to produce an enhancement of the cathodic current. The plot of the cathodic current versus the dissolved oxygen concentration for chronoamperometry (potential fixed = -0.20 V) at the sensor was linear in the concentration range of 3.95 to 9.20 mg L-1 with concentration limit of 0.17 mg L-1 O-2. The modified electrode proposed is useful for the quality control and routine analysis of dissolved oxygen in commercial water and environmental water samples. The results obtained for the levels of dissolved oxygen are in agreement with the results obtained with an O-2 commercial sensor. (C) 2011 Published by Elsevier Ltd.
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)