875 resultados para Texture segmentation
Resumo:
The image by Computed Tomography is a non-invasive alternative for observing soil structures, mainly pore space. The pore space correspond in soil data to empty or free space in the sense that no material is present there but only fluids, the fluid transport depend of pore spaces in soil, for this reason is important identify the regions that correspond to pore zones. In this paper we present a methodology in order to detect pore space and solid soil based on the synergy of the image processing, pattern recognition and artificial intelligence. The mathematical morphology is an image processing technique used for the purpose of image enhancement. In order to find pixels groups with a similar gray level intensity, or more or less homogeneous groups, a novel image sub-segmentation based on a Possibilistic Fuzzy c-Means (PFCM) clustering algorithm was used. The Artificial Neural Networks (ANNs) are very efficient for demanding large scale and generic pattern recognition applications for this reason finally a classifier based on artificial neural network is applied in order to classify soil images in two classes, pore space and solid soil respectively.
Resumo:
Graphics Processing Units have become a booster for the microelectronics industry. However, due to intellectual property issues, there is a serious lack of information on implementation details of the hardware architecture that is behind GPUs. For instance, the way texture is handled and decompressed in a GPU to reduce bandwidth usage has never been dealt with in depth from a hardware point of view. This work addresses a comparative study on the hardware implementation of different texture decompression algorithms for both conventional (PCs and video game consoles) and mobile platforms. Circuit synthesis is performed targeting both a reconfigurable hardware platform and a 90nm standard cell library. Area-delay trade-offs have been extensively analyzed, which allows us to compare the complexity of decompressors and thus determine suitability of algorithms for systems with limited hardware resources.
Resumo:
Applying biometrics to daily scenarios involves demanding requirements in terms of software and hardware. On the contrary, current biometric techniques are also being adapted to present-day devices, like mobile phones, laptops and the like, which are far from meeting the previous stated requirements. In fact, achieving a combination of both necessities is one of the most difficult problems at present in biometrics. Therefore, this paper presents a segmentation algorithm able to provide suitable solutions in terms of precision for hand biometric recognition, considering a wide range of backgrounds like carpets, glass, grass, mud, pavement, plastic, tiles or wood. Results highlight that segmentation accuracy is carried out with high rates of precision (F-measure 88%)), presenting competitive time results when compared to state-of-the-art segmentation algorithms time performance
Resumo:
We introduce a simple and innovative method to compare any two texture maps, regardless of their sizes, aspect ratios, or even masks, as long as they are both meant to be mapped onto the same 3D mesh. Our system is based on a zero-distortion 3D mesh unwrapping technique which compares two new adapted texture atlases with the same mask but different texel colors, and whose every texel covers the same area in 3D. Once these adapted atlases are created, we measure their difference with ITEM-RMSE, a slightly modified version of the standard RMSE defined for images. ITEM-RMSE is more meaningful and reliable than RMSE because it only takes into account the texels inside the mask, since they are the only ones that will actually be used during rendering. Our method is not only very useful to compare the space efficiency of different texture atlas generation algorithms, but also to quantify texture loss in compression schemes for multi-resolution textured 3D meshes.
Resumo:
We present an innovative system to encode and transmit textured multi-resolution 3D meshes in a progressive way, with no need to send several texture images, one for each mesh LOD (Level Of Detail). All texture LODs are created from the finest one (associated to the finest mesh), but can be re- constructed progressively from the coarsest thanks to refinement images calculated in the encoding process, and transmitted only if needed. This allows us to adjust the LOD/quality of both 3D mesh and texture according to the rendering power of the device that will display them, and to the network capacity. Additionally, we achieve big savings in data transmission by avoiding altogether texture coordinates, which are generated automatically thanks to an unwrapping system agreed upon by both encoder and decoder.
Resumo:
New trends in biometrics are oriented to mobile devices in order to increase the overall security in daily actions like bank account access, e-commerce or even document protection within the mobile. However, applying biometrics to mobile devices imply challenging aspects in biometric data acquisition, feature extraction or private data storage. Concretely, this paper attempts to deal with the problem of hand segmentation given a picture of the hand in an unknown background, requiring an accurate result in terms of hand isolation. For the sake of user acceptability, no restrictions are done on background, and therefore, hand images can be taken without any constraint, resulting segmentation in an exigent task. Multiscale aggregation strategies are proposed in order to solve this problem due to their accurate results in unconstrained and complicated scenarios, together with their properties in time performance. This method is evaluated with a public synthetic database with 480000 images considering different backgrounds and illumination environments. The results obtained in terms of accuracy and time performance highlight their capability of being a suitable solution for the problem of hand segmentation in contact-less environments, outperforming competitive methods in literature like Lossy Data Compression image segmentation (LDC).
Resumo:
This paper presents an image segmentation algorithm based on Gaussian multiscale aggregation oriented to hand biometric applications. The method is able to isolate the hand from a wide variety of background textures such as carpets, fabric, glass, grass, soil or stones. The evaluation was carried out by using a publicly available synthetic database with 408,000 hand images in different backgrounds, comparing the performance in terms of accuracy and computational cost to two competitive segmentation methods existing in literature, namely Lossy Data Compression (LDC) and Normalized Cuts (NCuts). The results highlight that the proposed method outperforms current competitive segmentation methods with regard to computational cost, time performance, accuracy and memory usage.
Resumo:
The synapses in the cerebral cortex can be classified into two main types, Gray’s type I and type II, which correspond to asymmetric (mostly glutamatergic excitatory) and symmetric (inhibitory GABAergic) synapses, respectively. Hence, the quantification and identification of their different types and the proportions in which they are found, is extraordinarily important in terms of brain function. The ideal approach to calculate the number of synapses per unit volume is to analyze 3D samples reconstructed from serial sections. However, obtaining serial sections by transmission electron microscopy is an extremely time consuming and technically demanding task. Using focused ion beam/scanning electron microscope microscopy, we recently showed that virtually all synapses can be accurately identified as asymmetric or symmetric synapses when they are visualized, reconstructed, and quantified from large 3D tissue samples obtained in an automated manner. Nevertheless, the analysis, segmentation, and quantification of synapses is still a labor intensive procedure. Thus, novel solutions are currently necessary to deal with the large volume of data that is being generated by automated 3D electron microscopy. Accordingly, we have developed ESPINA, a software tool that performs the automated segmentation and counting of synapses in a reconstructed 3D volume of the cerebral cortex, and that greatly facilitates and accelerates these processes.
Resumo:
One important issue emerging strongly in agriculture is related with the automatization of tasks, where the optical sensors play an important role. They provide images that must be conveniently processed. The most relevantimage processing procedures require the identification of green plants, in our experiments they come from barley and corn crops including weeds, so that some types of action can be carried out, including site-specific treatments with chemical products or mechanical manipulations. Also the identification of textures belonging to the soil could be useful to know some variables, such as humidity, smoothness or any others. Finally, from the point of view of the autonomous robot navigation, where the robot is equipped with the imaging system, some times it is convenient to know not only the soil information and the plants growing in the soil but also additional information supplied by global references based on specific areas. This implies that the images to be processed contain textures of three main types to be identified: green plants, soil and sky if any. This paper proposes a new automatic approach for segmenting these main textures and also to refine the identification of sub-textures inside the main ones. Concerning the green identification, we propose a new approach that exploits the performance of existing strategies by combining them. The combination takes into account the relevance of the information provided by each strategy based on the intensity variability. This makes an important contribution. The combination of thresholding approaches, for segmenting the soil and the sky, makes the second contribution; finally the adjusting of the supervised fuzzy clustering approach for identifying sub-textures automatically, makes the third finding. The performance of the method allows to verify its viability for automatic tasks in agriculture based on image processing
Resumo:
Métrica de calidad de video de alta definición construida a partir de ratios de referencia completa. La medida de calidad de video, en inglés Visual Quality Assessment (VQA), es uno de los mayores retos por solucionar en el entorno multimedia. La calidad de vídeo tiene un impacto altísimo en la percepción del usuario final (consumidor) de los servicios sustentados en la provisión de contenidos multimedia y, por tanto, factor clave en la valoración del nuevo paradigma denominado Calidad de la Experiencia, en inglés Quality of Experience (QoE). Los modelos de medida de calidad de vídeo se pueden agrupar en varias ramas según la base técnica que sustenta el sistema de medida, destacando en importancia los que emplean modelos psicovisuales orientados a reproducir las características del sistema visual humano, en inglés Human Visual System, del que toman sus siglas HVS, y los que, por el contrario, optan por una aproximación ingenieril en la que el cálculo de calidad está basado en la extracción de parámetros intrínsecos de la imagen y su comparación. A pesar de los avances recogidos en este campo en los últimos años, la investigación en métricas de calidad de vídeo, tanto en presencia de referencia (los modelos denominados de referencia completa), como en presencia de parte de ella (modelos de referencia reducida) e incluso los que trabajan en ausencia de la misma (denominados sin referencia), tiene un amplio camino de mejora y objetivos por alcanzar. Dentro de ellos, la medida de señales de alta definición, especialmente las utilizadas en las primeras etapas de la cadena de valor que son de muy alta calidad, son de especial interés por su influencia en la calidad final del servicio y no existen modelos fiables de medida en la actualidad. Esta tesis doctoral presenta un modelo de medida de calidad de referencia completa que hemos llamado PARMENIA (PArallel Ratios MEtric from iNtrInsic features Analysis), basado en la ponderación de cuatro ratios de calidad calculados a partir de características intrínsecas de la imagen. Son: El Ratio de Fidelidad, calculado mediante el gradiente morfológico o gradiente de Beucher. El Ratio de Similitud Visual, calculado mediante los puntos visualmente significativos de la imagen a través de filtrados locales de contraste. El Ratio de Nitidez, que procede de la extracción del estadístico de textura de Haralick contraste. El Ratio de Complejidad, obtenido de la definición de homogeneidad del conjunto de estadísticos de textura de Haralick PARMENIA presenta como novedad la utilización de la morfología matemática y estadísticos de Haralick como base de una métrica de medida de calidad, pues esas técnicas han estado tradicionalmente más ligadas a la teledetección y la segmentación de objetos. Además, la aproximación de la métrica como un conjunto ponderado de ratios es igualmente novedosa debido a que se alimenta de modelos de similitud estructural y otros más clásicos, basados en la perceptibilidad del error generado por la degradación de la señal asociada a la compresión. PARMENIA presenta resultados con una altísima correlación con las valoraciones MOS procedentes de las pruebas subjetivas a usuarios que se han realizado para la validación de la misma. El corpus de trabajo seleccionado procede de conjuntos de secuencias validados internacionalmente, de modo que los resultados aportados sean de la máxima calidad y el máximo rigor posible. La metodología de trabajo seguida ha consistido en la generación de un conjunto de secuencias de prueba de distintas calidades a través de la codificación con distintos escalones de cuantificación, la obtención de las valoraciones subjetivas de las mismas a través de pruebas subjetivas de calidad (basadas en la recomendación de la Unión Internacional de Telecomunicaciones BT.500), y la validación mediante el cálculo de la correlación de PARMENIA con estos valores subjetivos, cuantificada a través del coeficiente de correlación de Pearson. Una vez realizada la validación de los ratios y optimizada su influencia en la medida final y su alta correlación con la percepción, se ha realizado una segunda revisión sobre secuencias del hdtv test dataset 1 del Grupo de Expertos de Calidad de Vídeo (VQEG, Video Quality Expert Group) mostrando los resultados obtenidos sus claras ventajas. Abstract Visual Quality Assessment has been so far one of the most intriguing challenges on the media environment. Progressive evolution towards higher resolutions while increasing the quality needed (e.g. high definition and better image quality) aims to redefine models for quality measuring. Given the growing interest in multimedia services delivery, perceptual quality measurement has become a very active area of research. First, in this work, a classification of objective video quality metrics based on their underlying methodologies and approaches for measuring video quality has been introduced to sum up the state of the art. Then, this doctoral thesis describes an enhanced solution for full reference objective quality measurement based on mathematical morphology, texture features and visual similarity information that provides a normalized metric that we have called PARMENIA (PArallel Ratios MEtric from iNtrInsic features Analysis), with a high correlated MOS score. The PARMENIA metric is based on the pooling of different quality ratios that are obtained from three different approaches: Beucher’s gradient, local contrast filtering, and contrast and homogeneity Haralick’s texture features. The metric performance is excellent, and improves the current state of the art by providing a wide dynamic range that make easier to discriminate between very close quality coded sequences, especially for very high bit rates whose quality, currently, is transparent for quality metrics. PARMENIA introduces a degree of novelty against other working metrics: on the one hand, exploits the structural information variation to build the metric’s kernel, but complements the measure with texture information and a ratio of visual meaningful points that is closer to typical error sensitivity based approaches. We would like to point out that PARMENIA approach is the only metric built upon full reference ratios, and using mathematical morphology and texture features (typically used in segmentation) for quality assessment. On the other hand, it gets results with a wide dynamic range that allows measuring the quality of high definition sequences from bit rates of hundreds of Megabits (Mbps) down to typical distribution rates (5-6 Mbps), even streaming rates (1- 2 Mbps). Thus, a direct correlation between PARMENIA and MOS scores are easily constructed. PARMENIA may further enhance the number of available choices in objective quality measurement, especially for very high quality HD materials. All this results come from validation that has been achieved through internationally validated datasets on which subjective tests based on ITU-T BT.500 methodology have been carried out. Pearson correlation coefficient has been calculated to verify the accuracy of PARMENIA and its reliability.
Resumo:
In this paper we present a continuum theory for large strain anisotropic elastoplasticity based on a decomposition of the modified plastic velocity gradient into energetic and dissipative parts. The theory includes the Armstrong and Frederick hardening rule as well as multilayer models as special cases even for large strain anisotropic elastoplasticity. Texture evolution may also be modelled by the formulation, which allows for a meaningful interpretation of the terms of the dissipation equation
Resumo:
An AZ31 rolled sheet alloy has been tested at dynamic strain rates View the MathML source at 250 °C up to various intermediate strains before failure in order to investigate the predominant deformation and restoration mechanisms. In particular, tests have been carried out in compression along the rolling direction (RD), in tension along the RD and in compression along the normal direction (ND). It has been found that dynamic recrystallization (DRX) takes place despite the limited diffusion taking place under the high strain rates investigated. The DRX mechanisms and kinetics depend on the operative deformation mechanisms and thus vary for different loading modes (tension, compression) as well as for different relative orientations between the loading axis and the c-axes of the grains. In particular, DRX is enhanced by the operation of 〈c + a〉 slip, since cross-slip and climb take place more readily than for other slip systems, and thus the formation of high angle boundaries is easier. DRX is also clearly promoted by twinning.
Resumo:
Non-invasive quantitative assessment of the right ventricular anatomical and functional parameters is a challenging task. We present a semi-automatic approach for right ventricle (RV) segmentation from 4D MR images in two variants, which differ in the amount of user interaction. The method consists of three main phases: First, foreground and background markers are generated from the user input. Next, an over-segmented region image is obtained applying a watershed transform. Finally, these regions are merged using 4D graph-cuts with an intensity based boundary term. For the first variant the user outlines the inside of the RV wall in a few end-diastole slices, for the second two marker pixels serve as starting point for a statistical atlas application. Results were obtained by blind evaluation on 16 testing 4D MR volumes. They prove our method to be robust against markers location and place it favourably in the ranks of existing approaches.
Resumo:
Many studies investigating the aging brain or disease-induced brain alterations rely on accurate and reproducible brain tissue segmentation. Being a preliminary processing step prior to the segmentation, reliableskull-stripping the removal ofnon-brain tissue is also crucial for all later image assessment. Typically, segmentation algorithms rely on an atlas i.e. pre-segmented template data. Brain morphology, however, differs considerably depending on age, sex and race. In addition, diseased brains may deviate significantly from the atlas information typically gained from healthy volunteers. The imposed prior atlas information can thus lead to degradation of segmentation results. The recently introduced MP2RAGE sequence provides a bias-free T1 contrast with heavily reduced T2*- and PD-weighting compared to the standard MP-RAGE [1]. To this end, it acquires two image volumes at different inversion times in one acquisition, combining them to a uniform, i.e. homogenous image. In this work, we exploit the advantageous contrast properties of the MP2RAGE and combine it with a Dixon (i.e. fat-water separation) approach. The information gained by the additional fat image of the head considerably improves the skull-stripping outcome [2]. In conjunction with the pure T1 contrast of the MP2RAGE uniform image, we achieve robust skull-stripping and brain tissue segmentation without the use of an atlas
Resumo:
The effect of adding different ratios of inulin and extra virgin olive oil blends, formulated without (MPA) and with cryoprotectants (MPB), on texture properties of fresh mashed potatoes and frozen/thawed mashed potatoes was studied. Inulin and extra virgin olive oil behaved like soft ?llers, but inulin was associated with increased?brousness and extra virgin olive oil with increased creaminess. In the total dataset and frozen mashed potatoes, frozen/thawed mashed potatoes, and MPA subgroups, component 1 was a contrast between mechanical and surface textural attributes, whereas in MPB samples component 1 was determined by geometrical attributes. Addition of inulin at 30 g/kg and extra virgin olive oil at 45 g/kg is recommended.