914 resultados para Terrestrial Ecosystems
Resumo:
This paper identifies the important limiting processes in transmission capacity for amplified soliton systems. Some novel control techniques are described for optimizing this capacity. In particular, dispersion compensation and phase conjugation are identified as offering good control of jitter without the need for many new components in the system. An advanced average soliton model is described and demonstrated to permit large amplifier spacing. The potential for solitons in high-dispersion land-based systems is discussed and results are presented showing 10 Gbit s$^{-1}$ transmission over 1000 km with significant amplifier spacing.
Resumo:
1. Exchange of carbon dioxide (CO2) from soils can contribute significantly to the global warming potential (GWP) of agro-ecosystems. Due to variations in soil type, climatic onditions and land management practices, exchange of CO2 can differ markedly in different geographical locations. The food industry is developing carbon footprints for their products necessitating integration of CO2 exchange from soils with other CO2 emissions along the food chain. It may be advantageous to grow certain crops in different geographical locations to minimize CO2 emissions from the soil, and this may provide potential to offset other emissions in the food chain, such as transport. 2. Values are derived for the C balance of soils growing horticultural crops in the UK, Spain and Uganda. Net ecosystem production (NEP) is firstly calculated from the difference in net primary production (NPP) and heterotrophic soil respiration (Rh). Both NPP and Rh were estimated from intensive direct field measurements. Secondly, net biome production (NBP) is calculated by subtracting the crop biomass from NEP to give an indication of C balance. The importance of soil exchange is discussed in the light of recent discussions on carbon footprints and within the context of food life-cycle assessment (LCA). 3. The amount of crop relative to the biomass and the Rh prevailing in the different countries were the dominant factors influencing the magnitude of NEP and NBP. The majority of the biomass for lettuce Lactuca sativa and vining peas Pisum sativum, was removed from the field as crop; therefore, NEP and NBP were mainly negative. This was amplified for lettuces grown in Uganda (-16·5 and -17 t C ha-1 year-1 compared to UK and Spain -4·8 to 7·4 and -5·1 to 6·3 t C ha-1 year-1 for NEP and NBP, respectively) where the climate elevated Rh. 4. Synthesis and applications. This study demonstrates the importance of soil emissions in the overall life cycle of vegetables. Variability in such emissions suggests that assigning a single value to food carbon footprints may not be adequate, even within a country. Locations with high heterotrophic soil respiration, such as Spain and Uganda (21·9 and 21·6 t C ha-1 year-1, respectively), could mitigate the negative effects of climate on the C costs of crop production by growth of crops with greater returns of residue to the soil. This would minimize net CO2 emissions from these agricultural ecosystems.
Resumo:
The Digital Observatory for Protected Areas (DOPA) has been developed to support the European Union’s efforts in strengthening our capacity to mobilize and use biodiversity data, information and forecasts so that they are readily accessible to policymakers, managers, experts and other users. Conceived as a set of web based services, DOPA provides a broad set of free and open source tools to assess, monitor and even forecast the state of and pressure on protected areas at local, regional and global scale. DOPA Explorer 1.0 is a web based interface available in four languages (EN, FR, ES, PT) providing simple means to explore the nearly 16,000 protected areas that are at least as large as 100 km2. Distinguishing between terrestrial, marine and mixed protected areas, DOPA Explorer 1.0 can help end users to identify those with most unique ecosystems and species, and assess the pressures they are exposed to because of human development. Recognized by the UN Convention on Biological Diversity (CBD) as a reference information system, DOPA Explorer is based on the best global data sets available and provides means to rank protected areas at the country and ecoregion levels. Inversely, DOPA Explorer indirectly highlights the protected areas for which information is incomplete. We finally invite the end-users of DOPA to engage with us through the proposed communication platforms to help improve our work to support the safeguarding of biodiversity.
Resumo:
BACKGROUND: Terrestrial Trunked Radio (TETRA) is a telecommunications system widely used by police and emergency services around the world. The Stewart Report on mobile telephony and health raised questions about possible health effects associated with TETRA signals. This study investigates possible effects of TETRA signals on the electroencephalogram and electrocardiogram in human volunteers. METHODS: Blinded randomized provocation study with a standardized TETRA signal or sham exposure. In the first of two experiments, police officers had a TETRA set placed first against the left temple and then the upper-left quadrant of the chest and the electroencephalogram was recorded during rest and active cognitive processing. In the second experiment, volunteers were subject to chest exposure of TETRA whilst their electroencephalogram and heart rate variability derived from the electrocardiogram were recorded. RESULTS: In the first experiment, we found that exposure to TETRA had consistent neurophysiological effects on the electroencephalogram, but only during chest exposure, in a pattern suggestive of vagal nerve stimulation. In the second experiment, we observed changes in heart rate variability during exposure to TETRA but the electroencephalogram effects were not replicated. CONCLUSIONS: Observed effects of exposure to TETRA signals on the electroencephalogram (first experiment) and electrocardiogram are consistent with vagal nerve stimulation in the chest by TETRA. However given the small effect on heart rate variability and the lack of consistency on the electroencephalogram, it seems unlikely that this will have a significant impact on health. Long-term monitoring of the health of the police force in relation to TETRA use is on-going.
Resumo:
There is good evidence that higher global temperature will promote a rise of green house gas levels, implying a positive feedback which will increase the effect of the anthropogenic emissions on global temperatures. Here we present a review about the results which deal with the possible feedbacks between ecosystems and the climate system. There are a lot of types of feedback which are classified. Some circulation models are compared to each other regarding their role in interactive carbon cycle.
Resumo:
Knowledge on the expected effects of climate change on aquatic ecosystems is defined by three ways. On the one hand, long-term observation in the field serves as a basis for the possible changes; on the other hand, the experimental approach may bring valuable pieces of information to the research field. The expected effects of climate change cannot be studied by empirical approach; rather mathematical models are useful tools for this purpose. Within this study, the main findings of field observations and their implications for future were summarized; moreover, the modelling approaches were discussed in a more detailed way. Some models try to describe the variation of physical parameters in a given aquatic habitat, thus our knowledge on their biota is confined to the findings based on our present observations. Others are destined for answering special issues related to the given water body. Complex ecosystem models are the keys of our better understanding of the possible effects of climate change. Basically, these models were not created for testing the influence of global warming, rather focused on the description of a complex system (e. g. a lake) involving environmental variables, nutrients. However, such models are capable of studying climatic changes as well by taking into consideration a large set of environmental variables. Mostly, the outputs are consistent with the assumptions based on the findings in the field. Since synthetized models are rather difficult to handle and require quite large series of data, the authors proposed a more simple modelling approach, which is capable of examining the effects of global warming. This approach includes weather dependent simulation modelling of the seasonal dynamics of aquatic organisms within a simplified framework.
Resumo:
The pine rocklands of South Florida, characterized by a rich herbaceous flora with many narrowly endemic taxa beneath an overstory of south Florida slash pine (Pinus elliottii var. densa), are found in three areas: the Miami Rock Ridge of southeastern peninsular Florida, the Lower Florida Keys, and slightly elevated portions of the southern Big Cypress National Preserve. Fire is an important element in these ecosystems, since in its absence the pine canopy is likely to be replaced by dense hardwoods, resulting in loss of the characteristic pineland herb flora. Prescribed fire has been used in Florida Keys pine forests since the creation of the National Key Deer Refuge (NKDR), with the primary aim of reducing fuels. Because fire can also be an effective tool in shaping ecological communities, we conducted a 4-year research study which explored a range of fire management options in NKDR. The intent of the study was to provide the Fish and Wildlife Service and other land managers with information regarding when and where to burn in order to perpetuate these unique forests.
Resumo:
The Everglades are undergoing the world largest wetland restoration project with the aim of returning this system to hydrological conditions in place prior to anthropogenic modifications. Therefore, it is essential to know what these pristine conditions were. In this work, molecular marker (biomarker) distributions and carbon stable isotopic signatures in sediment samples were employed to assess historical environmental changes in Florida Bay over approximately the last 4000 years. Two biomarkers of terrestrial plants, particularly for mangroves (taraxerol and C29 n-alkane), combined with two seagrass proxies (the Paq and the C25/C 27 n-alkan-2-one ratio) revealed a sedimentary environmental shift from freshwater marshes to mangrove swamps and then to seagrass dominated marine ecosystems, likely as a result of sea-level rise in Florida Bay since the Holocene. The maximum values for the Paq and the C 25/C27 n-alkan-2-ones occurred during the 20th century, suggesting that the greatest abundance of seagrass cover is a recent rather than a historical, long-term phenomenon. The greater oscillation in frequency and amplitude for the biomarkers after 1900 potentially reflects an ecosystem under increasing anthropogenic stress. Several algal biomarkers such as C20 highly branched isoprenoids (HBIs), C 25 HBIs and dinosterol indicative of cyanobacteria, diatom and dinoflagellate organic matter inputs respectively, increased dramatically in the latter part of the 20th century and were attributed to recent anthropogenic changes in Florida Bay. ^ The highlight of this work is the development of HBIs as paleo-proxies. As biomarkers of diatoms, the C25 HBIs in the core from the central bay displayed the highest concentration at mid depth, reflecting strong historical inputs of diatom-derived sedimentary OM during that period. In fact, the depth profile of C25 HBIs coincided quite well with historical variations in diatom abundance and variations in diatom species composition in central Florida Bay based on the results of fossil diatom species analysis by microscopy. This study provides evidence that some C25 HBIs can be applied as biomarkers for certain diatom inputs in paleoenvironmental studies. The sources of C20 and C30 HBIs and their potential applicability as paleo-proxies were also investigated and their sources assessed based on their δ13C distributions. ^
Resumo:
Mercury (Hg) contamination problem in the United Sates has been an important issue due to its potential threat to human and ecological health. This thesis presents a study of two Hg-contaminated sites along the East Fork Poplar Creek (EFPC) at Oak Ridge. The top soils from the terrestrial areas, along with the soils from three vertical soil horizons at the EFPC bank were sampled and analyzed for total-Hg (THg), methyl-Hg, total-organic-carbon (TOC), and pH. The stream bank soils were also analyzed for the stable-Hg-isotopes (198Hg, 199Hg, 200Hg, 201Hg, and 202Hg). Furthermore, some of the soil samples (n=7) from the same study sites were investigated for phytoavailability of mercury as measured by degree of Hg translocation in aboveground biomass of Impatiens walleriana plants grown in the soils.^ The results showed a significant difference (p<0.001) in THg concentrations for the forest soils (42.40±4.98 mg/kg) and the grassland soils (8.71±2.30 mg/kg). The higher THg and methyl-Hg concentrations were commensurate with the higher TOC content in the soils (p<0.001). Also, the THg concentrations for the upstream site was higher (129.08±34.14 mg/kg) than the downstream site (24.31±3.47 mg/kg). The two sites also differed in their stable Hg isotope compositions (p<0.001 for δ199Hg). The stable isotope analysis indicated the increased level of mass dependent isotopic fractionation with increasing depths along the EFPC bank. The difference between the two study sites was also prominent in case of the Hg uptake by the plants, with higher Hg uptake from the upstream soils compared to that from the downstream soils. A significant correlation, r=0.93 p<0.01, was observed between the Hg uptake and the soil-THg concentrations. THg was higher in the leaves (1161.87±310.01 μg/kg) than in the flowers (206.13±55.23 μg/kg) or the stems (634.54±403.35μg/kg). ^ The level of Hg contamination increased with decreasing distance from the point source and was highly influenced by plants/microbes, soil-organic-content, and Hg-speciation. The isotopic study indicated the existence of an additional Hg source in the EFPC watershed, possibly atmospheric Hg-deposition. These findings are worth taking into account while planning any Hg remediation effort and developing Hg loading criteria as per the National Pollutant Discharge Elimination System (NPDES) Program.^
Resumo:
The objective of this study is to investigate hydrocarbon species and amounts released by red mangrove foliage and determine if these quantities warrant future research on atmospheric chemical processing of these compounds. The field investigation took place during July 2001 at Key Largo, Florida Bay, Florida. Foliage still attached to plants was enclosed in cuvettes while air of known flow rates circulated around leaves to study, hydrocarbon emissions. Cuvette air samples underwent gas chromatographic analyses to determine species and amounts of hydrocarbons released by mangrove foliage. Red mangrove foliage emits isoprene and trace amounts of the monoterpenes of alpha-pinene, beta-pinene, camphene, and d-limonene. The mangrove flowers released these latter compounds in amounts ranging from 0.5 to 10 mg (monoterpene) per gram of dry biomass per hour. These fluxes are normalized to, the foliage temperature of 30 degreesC. When normalized to the foliage temperature of 30 degreesC and light levels of 1000 mumol m(-2) s(-1), isoprene emission rates as high as 0.092 +/- 0.109 mug (isoprene) per gram of dry biomass per hour were measured. Compared to terrestrial forest ecosystems, red mangroves are low isoprene emitters. During peak flowering periods in the summertime, however, red mangroves may emit sufficient amounts of monoterpenes to alter ground-level ozone concentrations and contribute to biogenic aerosol formation.
Resumo:
Monitoring Ecosystems brings together leading scientists and researchers to offer a ground-breaking synthesis of lessons learned about ecological monitoring in major ecoregional initiatives around the United States. Contributors present insights and experiences gained from their work in designing, developing, and implementing comprehensive ecosystem monitoring programs in the Pacific Northwest, the lower Colorado River Basin, and the Florida Everglades. The book: outlines the conceptual and scientific underpinnings for regional-scale ecosystem monitoring examines the role and importance of data management, modeling, and integrative analyses considers techniques for and experience with monitoring habitats, populations, and communities Chapters by the editors synthesize and expand on points made throughout the volume and present recommendations for establishing frameworks for monitoring across scales, from local to international. Monitoring Ecosystems presents a critical examination of the lessons learned from direct experience along with generalized conclusions that can be applied to monitoring programs in the United States and around the world. It is a vital contribution to science-based monitoring efforts that will allow those responsible for developing and implementing ecoregional initiatives to make use of knowledge gained in previous efforts.
Resumo:
The pink shrimp, Farfantepenaeus duorarum, familiar to most Floridians as either food or bait shrimp, is ubiquitous in South Florida coastal and offshore waters and is proposed as an indicator for assessing restoration of South Florida's southern estuaries: Florida Bay, Biscayne Bay, and the mangrove estuaries of the lower southwest coast. Relationships between pink shrimp and salinity have been determined in both field and laboratory studies. Salinity is directly relevant to restoration because the salinity regimes of South Florida estuaries, critical nursery habitat for the pink shrimp, will be altered by changes in the quantity, timing, and distribution of freshwater inflow planned as part of the Comprehensive Everglades Restoration Project (CERP). Here we suggest performance measures based on pink shrimp density (number per square meter) in the estuaries and propose a restoration assessment and scoring scheme using these performance measures that can readily be communicated to managers, policy makers, and the interested public. The pink shrimp is an appropriate restoration indicator because of its ecological as well as its economic importance and also because scientific interest in pink shrimp in South Florida has produced a wealth of information about the species and relatively long time series of data on both juveniles in estuarine nursery habitats and adults on the fishing grounds. We suggest research needs for improving the pink shrimp performance measure.
Resumo:
Future climate change will likely represent a major stress to shallow aquatic and coastal marine communities around the world. Most climate change research, particularly in regards to increased pCO2 and ocean acidification, relies on ex situ mesocosm experimentation, isolating target organisms from their environment. Such mesocosms allow for greater experimental control of some variables, but can often cause unrealistic changes in a variety of environmental factors, leading to “bottle effects.” Here we present an in situ technique of altering dissolved pCO2within nearshore benthic communities (e.g., macrophytes, algae, and/or corals) using submerged clear, open-top chambers. Our technique utilizes a flow-through design that replicates natural water flow conditions and minimizes caging effects. The clear, open-top design additionally ensures that adequate light reaches the benthic community. Our results show that CO2 concentrations and pH can be successfully manipulated for long durations within the open-top chambers, continuously replicating forecasts for the year 2100. Enriched chambers displayed an average 0.46 unit reduction in pH as compared with ambient chambers over a 6-month period. Additionally, CO2 and HCO3 – concentrations were all significantly higher within the enriched chambers. We discuss the advantages and disadvantages of this technique in comparison to other ex situ mesocosm designs used for climate change research.