931 resultados para Tagged Mri


Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study is to investigate the blood flow pattern in carotid bifurcation with a high degree of luminal stenosis, combining in vivo magnetic resonance imaging (MRI) and computational fluid dynamics (CFD). A newly developed two-equation transitional model was employed to evaluate wall shear stress (WSS) distribution and pressure drop across the stenosis, which are closely related to plaque vulnerability. A patient with an 80% left carotid stenosis was imaged using high resolution MRI, from which a patient-specific geometry was reconstructed and flow boundary conditions were acquired for CFD simulation. A transitional model was implemented to investigate the flow velocity and WSS distribution in the patient-specific model. The peak time-averaged WSS value of approximately 73Pa was predicted by the transitional flow model, and the regions of high WSS occurred at the throat of the stenosis. High oscillatory shear index values up to 0.50 were present in a helical flow pattern from the outer wall of the internal carotid artery immediately after the throat. This study shows the potential suitability of a transitional turbulent flow model in capturing the flow phenomena in severely stenosed carotid arteries using patient-specific MRI data and provides the basis for further investigation of the links between haemodynamic variables and plaque vulnerability. It may be useful in the future for risk assessment of patients with carotid disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Biomechanical stress analysis has been used for plaque vulnerability assessment. The presence of plaque hemorrhage (PH) is a feature of plaque vulnerability and is associated with thromboembolic ischemic events. The purpose of the present study was to use finite element analysis (FEA) to compare the stress profiles of hemorrhagic and non-hemorrhagic profiles. Methods and Results: Forty-five consecutive patients who had suffered a cerebrovascular ischemic event with an underlying carotid artery disease underwent high-resolution magnetic resonance imaging (MRI) of their symptomatic carotid artery in a 1.5-T MRI system. Axial images were manually segmented for various plaque components and used for FEA. Maximum critical stress (M-CstressSL) for each slice was determined. Within a plaque, the maximum M-CstressSL for each slice of a plaque was selected to represent the maximum critical stress of that plaque (M-CstressPL) and used to compare hemorrhagic and non-hemorrhagic plaques. A total of 62% of plaques had hemorrhage. It was observed that plaques with hemorrhage had significantly higher stress (M-CstressPL) than plaques without PH (median [interquartile range]: 315 kPa [247-434] vs. 200 kPa [171-282], P=0.003). Conclusions: Hemorrhagic plaques have higher biomechanical stresses than non-hemorrhagic plaques. MRI-based FEA seems to have the potential to assess plaque vulnerability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: The purpose of this study is to examine the feasibility of developing plasma predictive value biomarkers of cerebral ischemic stroke before imaging evidence is acquired. Methods: Blood samples were obtained from 198 patients who attended our neurology department as emergencies - with symptoms of vertigo, numbness, limb weakness, etc. - within 4.5 h of symptom onset, and before imaging evidence was obtained and medical treatment. After the final diagnosis was made by MRI/DWI/MRA or CTA in the following 24-72 h, the above cases were divided into two groups: stroke group and non-stroke group according to the imaging results. The levels of baseline plasma antithrombin III (AT-III), thrombin-antithrombin III (TAT), fibrinogen, D-dimer and high-sensitivity C-reactive protein (hsCRP) in the two groups were assayed. Results: The level of the baseline AT-III in the stroke group was 118.07 ± 26.22%, which was lower than that of the non-stroke group (283.83 ± 38.39%). The levels of TAT, fibrinogen, hsCRP were 7.24 ± 2.28 μg/L, 5.49 ± 0.98 g/L, and 2.17 ± 1.07 mg/L, respectively, which were higher than those of the non-stroke group (2.53 ± 1.23 μg/L, 3.35 ± 0.50 g/L, 1.82 ± 0.67 mg/L). All the P-values were less than 0.001. The D-dimer level was 322.57 ± 60.34 μg/L, which was slightly higher than that of the non-stroke group (305.76 ± 49.52 μg/L), but the P-value was 0.667. The sensitivities of AT-III, TAT, fibrinogen, D-dimer and hsCRP for predicting ischemic stroke tendency were 97.37%, 96.05%, 3.29%, 7.89%, but the specificity was 93.62%, 82.61%, 100% and 100%, respectively, and all the P-values were less than 0.001. High levels of D-dimer and hsCRP were mainly seen in the few cases with severe large-vessel infarction. Conclusions: Clinical manifestations of acute focal neurological deficits were associated with plasma AT-III and fibrinogen. These tests might help the risk assessment of acute cerebral ischemic stroke and/or TIA with infarction tendency in the superacute stage before positive imaging evidence is obtained.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Stroke is one of the leading causes of death in the world, resulting mostly from the sudden ruptures of atherosclerosis carotid plaques. Until now, the exact plaque rupture mechanism has not been fully understood, and also the plaque rupture risk stratification. The advanced multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components to be visualized in-vivo and reconstructed by computational modeling. In the study, plaque stress analysis using fully coupled fluid structure interaction was applied to 20 patients (12 symptomatic and 8 asymptomatic) reconstructed from in-vivo MRI, followed by a detailed biomechanics analysis, and morphological feature study. The locally extreme stress conditions can be found in the fibrous cap region, 85% at the plaque shoulder based on the present study cases. Local maximum stress values predicted in the plaque region were found to be significantly higher in symptomatic patients than that in asymptomatic patients (200±43. kPa vs. 127±37. kPa, p=0.001). Plaque stress level, defined by excluding 5% highest stress nodes in the fibrous cap region based on the accumulative histogram of stress experienced on the computational nodes in the fibrous cap, was also significantly higher in symptomatic patients than that in asymptomatic patients (154±32. kPa vs. 111±23. kPa, p<0.05). Although there was no significant difference in lipid core size between the two patient groups, symptomatic group normally had a larger lipid core and a significantly thinner fibrous cap based on the reconstructed plaques using 3D interpolation from stacks of 2D contours. Plaques with a higher stenosis were more likely to have extreme stress conditions upstream of plaque throat. The combined analyses of plaque MR image and plaque stress will advance our understanding of plaque rupture, and provide a useful tool on assessing plaque rupture risk.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Plaque rupture has been considered to be the result of its structural failure. The aim of this study is to suggest a possible link between higher stresses and rupture sites observed from in vivo magnetic resonance imaging (MRI) of transient ischemic attack (TIA) patients, by using stress analysis methods. Three patients, who had recently suffered a TIA, underwent in vivo multi-spectral MR imaging. Based on plaque geometries reconstructed from the post-rupture status, six pre-rupture plaque models were generated for each patient dataset with different reconstructions of rupture sites to bridge the gap of fibrous cap from original MRI images. Stress analysis by fluid structure interaction simulation was performed on the models, followed by analysis of local stress concentration distribution and plaque rupture sites. Furthermore, the sensitivity of stress analysis to the pre-rupture plaque geometry reconstruction was examined. Local stress concentrations were found to be located at the plaque rupture sites for the three subjects studied. In the total of 18 models created, the locations of the stress concentration regions were similar in 17 models in which rupture sites were always associated with high stresses. The local stress concentration region moved from circumferential center to the shoulder region (slightly away from the rupture site) for a case with a thick fibrous cap. Plaque wall stress level in the rupture locations was found to be much higher than the value in non-rupture locations. The good correlation between local stress concentrations and plaque rupture sites, and generally higher plaque wall stress level in rupture locations in the subjects studied could provide indirect evidence for the extreme stress-induced plaque rupture hypothesis. Local stress concentration in the plaque region could be one of the factors contributing to plaque rupture.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: There is considerable evidence that patients with carotid artery stenosis treated immediately after the ischaemic cerebrovascular event have a better clinical outcome than those who have delayed treatment. Biomechanical assessment of carotid plaques using high-resolution MRI can help examine the relationship between the timing of carotid plaque symptomology and maximum simulated plaque stress concentration. Methods: Fifty patients underwent high-resolution multisequence in vivo MRI of their carotid arteries. Patients with acute symptoms (n=25) underwent MRI within 72 h of the onset of ischaemic cerebrovascular symptoms, whereas recently symptomatic patients (n=25) underwent MRI from 2 to 6 weeks after the onset of symptoms. Stress analysis was performed based on the geometry derived from in vivo MRI of the symptomatic carotid artery at the point of maximum stenosis. The peak stresses within the plaques of the two groups were compared. Results: Patient demographics were comparable for both groups. All the patients in the recently symptomatic group had severe carotid stenosis in contrast to patients with acute symptoms who had predominantly mild to moderate carotid stenosis. The simulated maximum stresses in patients with acute symptoms was significantly higher than in recently symptomatic patients (median (IQR): 313310 4 dynes/cm 2 (295 to 382) vs 2523104 dynes/cm 2 (236 to 311), p=0.02). Conclusions: Patients have extremely unstable, high-risk plaques, with high stresses, immediately after an acute cerebrovascular event, even at lower degrees of carotid stenoses. Biomechanical stress analysis may help us refine our risk-stratification criteria for the management of patients with carotid artery disease in future.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The selection of patients for vascular interventions has been solely based on luminal stenosis and symptomatology. However, histological data from both the coronary and carotid vasculature suggest that other plaque features such as inflammation may be more important in predicting future thromboembolic events. Ultrasmall superparamagnetic iron oxide (USPIO) contrast agents have been used for noninvasive MRI assessment of atherosclerotic plaque inflammation in humans. It has reached the stage of development to have been recently used in an interventional drug study to not only assess inflammatory progression but also select patients at high risk. This article reviews the basic science behind the use of USPIO contrast agents in atheroma MR imaging, experimental work in animals, and how this has led to the emergence of this promising targeted imaging platform for assessment of high risk carotid atherosclerosis in humans.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objectives: The aim of this study was to evaluate the effects of low-dose (10 mg) and high-dose (80 mg) atorvastatin on carotid plaque inflammation as determined by ultrasmall superparamagnetic iron oxide (USPIO)-enhanced carotid magnetic resonance imaging (MRI). The hypothesis was that treatment with 80 mg atorvastatin would demonstrate quantifiable changes in USPIO-enhanced MRI-defined inflammation within the first 3 months of therapy. Background: Preliminary studies indicate that USPIO-enhanced MRI can identify macrophage infiltration in human carotid atheroma in vivo and hence may be a surrogate marker of plaque inflammation. Methods: Forty-seven patients with carotid stenosis >40% on duplex ultrasonography and who demonstrated intraplaque accumulation of USPIO on MRI at baseline were randomly assigned in a balanced, double-blind manner to either 10 or 80 mg atorvastatin daily for 12 weeks. Baseline statin therapy was equivalent to 10 mg of atorvastatin or less. The primary end point was change from baseline in signal intensity (ΔSI) on USPIO-enhanced MRI in carotid plaque at 6 and 12 weeks. Results: Twenty patients completed 12 weeks of treatment in each group. A significant reduction from baseline in USPIO-defined inflammation was observed in the 80-mg group at both 6 weeks (ΔSI 0.13; p = 0.0003) and at 12 weeks (ΔSI 0.20; p < 0.0001). No difference was observed with the low-dose regimen. The 80-mg atorvastatin dose significantly reduced total cholesterol by 15% (p = 0.0003) and low-density lipoprotein cholesterol by 29% (p = 0.0001) at 12 weeks. Conclusions: Aggressive lipid-lowering therapy over a 3-month period is associated with significant reduction in USPIO-defined inflammation. USPIO-enhanced MRI methodology may be a useful imaging biomarker for the screening and assessment of therapeutic response to "anti-inflammatory" interventions in patients with atherosclerotic lesions. (Effects of Atorvastatin on Macrophage Activity and Plaque Inflammation Using Magnetic Resonance Imaging [ATHEROMA]; NCT00368589).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aim of this study was to evaluate the mechanical triggers that may cause plaque rupture. Wall shear stress (WSS) and pressure gradient are the direct mechanical forces acting on the plaque in a stenotic artery. Their influence on plaque stability is thought to be controversial. This study used a physiologically realistic, pulsatile flow, two-dimensional, cine phase-contrast MRI sequence in a patient with a 70% carotid stenosis. Instead of considering the full patient-specific carotid bifurcation derived from MRI, only the plaque region has been modelled by means of the idealised flow model. WSS reached a local maximum just distal to the stenosis followed by a negative local minimum. A pressure drop across the stenosis was found which varied significantly during systole and diastole. The ratio of the relative importance of WSS and pressure was assessed and was found to be less than 0.07% for all time phases, even at the throat of the stenosis. In conclusion, although the local high WSS at the stenosis may damage the endothelium and fissure plaque, the magnitude of WSS is small compared with the overall loading on plaque. Therefore, pressure may be the main mechanical trigger for plaque rupture and risk stratification using stress analysis of plaque stability may only need to consider the pressure effect.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background and purpose: Inflammation is a risk factor the vulnerable atheromatous plaque. This can be detected in vivo on high-resolution magnetic resonance (MR) imaging using a contrast agent, Sinerem™, an ultra-small super-paramagnetic iron oxide (USPIO). The aim of this study was to explore whether there is a difference in the degree of MR defined inflammation using USPIO particles, between symptomatic and asymptomatic carotid plaques. We report further on its T1 effect of enhancing the fibrous cap, which may allow dual contrast resolution of carotid atheroma. Methods: Twenty patients with carotid stenosis (10 symptomatic and 10 asymptomatic) underwent multi-sequence MR imaging before and 36 h post-USPIO infusion. Images were manually segmented into quadrants and signal change in each quadrant was calculated following USPIO administration. Mean signal change across all quadrants were compared between the two groups. Results: Symptomatic patients had significantly more quadrants with a signal drop than asymptomatic individuals (75% vs. 32%, p < 0.01). Asymptomatic plaques had more quadrants with signal enhancement than symptomatic ones (68% vs. 25%, p < 0.05); their mean signal change was also higher (46% vs. 15%, p < 0.01) and this appeared to correlate with a thicker fibrous cap on histology. Conclusions: Symptomatic patients had more quadrants with signal drop suggesting larger inflammatory infiltrates. Asymptomatic individuals showed significantly more enhancement possibly suggesting greater stability as a result of thicker fibrous caps. However, some asymptomatic plaques also had focal areas of signal drop, suggesting an occult macrophage burden. If validated by larger studies, USPIO may be a useful dual contrast agent able to improve risk stratification of patients with carotid stenosis and inform selection for intervention.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atherosclerotic plaque rupture has been extensively considered as the leading cause of death in the world. It is believed that high stress within plaque can be an important factor which can trigger the rupture of the plaque. High resolution multi-spectral magnetic resonance imaging (MRI) has allowed the plaque components (arterial wall, lipids, and fibrous cap) to be visualized in vivo [1]. The patient specific finite element model can be generated from the image data to perform stress analysis and provide critical information on understanding plaque rupture mechanisms [2]. The present work is to apply the procedure to a total of 14 patients (S1 ∼ S14), to study the stress distributions on carotid artery plaque reconstructed from multi-spectral magnetic resonance images, and the possible relationships between stress and plaque burdens.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Purpose: To quantify the uncertainties of carotid plaque morphology reconstruction based on patient-specific multispectral in vivo magnetic resonance imaging (MRI) and their impacts on the plaque stress analysis. Materials and Methods: In this study, three independent investigators were invited to reconstruct the carotid bifurcation with plaque based on MR images from two subjects to study the geometry reconstruction reproducibility. Finite element stress analyses were performed on the carotid bifurcations, as well as the models with artificially modified plaque geometries to mimic the image segmentation uncertainties, to study the impacts of the uncertainties to the stress prediction. Results: Plaque reconstruction reproducibility was generally high in the study. The uncertainties among interobservers are around one or the subpixel level. It also shows that the predicted stress is relatively less sensitive to the arterial wall segmentation uncertainties, and more affected by the accuracy of lipid region definition. For a model with lipid core region artificially increased by adding one pixel on the lipid region boundary, it will significantly increase the maximum Von Mises Stress in fibrous cap (>100%) compared with the baseline model for all subjects. Conclusion: The current in vivo MRI in the carotid plaque could provide useful and reliable information for plaque morphology. The accuracy of stress analysis based on plaque geometry is subject to MRI quality. The improved resolution/quality in plaque imaging with newly developed MRI protocols would generate more realistic stress predictions.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The rupture of atherosclerotic plaques is known to be associated with the stresses that act on or within the arterial wall. The extreme wall tensile stress (WTS) is usually recognized as a primary trigger for the rupture of vulnerable plaque. The present study used the in-vivo high-resolution multi-spectral magnetic resonance imaging (MRI) for carotid arterial plaque morphology reconstruction. Image segmentation of different plaque components was based on the multi-spectral MRI and co-registered with different sequences for the patient. Stress analysis was performed on totally four subjects with different plaque burden by fluid-structure interaction (FSI) simulations. Wall shear stress distributions are highly related to the degree of stenosis, while the level of its magnitude is much lower than the WTS in the fibrous cap. WTS is higher in the luminal wall and lower at the outer wall, with the lowest stress at the lipid region. Local stress concentrations are well confined in the thinner fibrous cap region, and usually locating in the plaque shoulder; the introduction of relative stress variation during a cycle in the fibrous cap can be a potential indicator for plaque fatigue process in the thin fibrous cap. According to stress analysis of the four subjects, a risk assessment in terms of mechanical factors could be made, which may be helpful in clinical practice. However, more subjects with patient specific analysis are desirable for plaque-stability study.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanical properties of arterial walls have long been recognized to play an essential role in the development and progression of cardiovascular disease (CVD). Early detection of variations in the elastic modulus of arteries would help in monitoring patients at high cardiovascular risk stratifying them according to risk. An in vivo, non-invasive, high resolution MR-phase-contrast based method for the estimation of the time-dependent elastic modulus of healthy arteries was developed, validated in vitro by means of a thin walled silicon rubber tube integrated into an existing MR-compatible flow simulator and used on healthy volunteers. A comparison of the elastic modulus of the silicon tube measured from the MRI-based technique with direct measurements confirmed the method's capability. The repeatability of the method was assessed. Viscoelastic and inertial effects characterizing the dynamic response of arteries in vivo emerged from the comparison of the pressure waveform and the area variation curve over a period. For all the volunteers who took part in the study the elastic modulus was found to be in the range 50-250 kPa, to increase during the rising part of the cycle, and to decrease with decreasing pressure during the downstroke of systole and subsequent diastole.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Introduction: PET-FDG and USPIO-enhanced MRI are increasingly being used in depicting carotid atheroma inflammation - a risk factor for the high risk plaque. Their combined use has not been previously reported. Report: Two patients presenting with stroke and identified with 50% carotid stenosis on duplex ultrasonography, underwent PET FDG and USPIO-enhanced MR imaging. Results were concordant and complementary suggesting that both techniques reflect similar metabolic processes. Discussion: The selection of patients for carotid revascularisation has largely been based on the severity of luminal stenosis alone. The two imaging modalities, which identify inflammatory activity, may be potential surrogate risk markers in the selection of patients eligible for carotid surgery, if plaque inflammation can be correlated with risk of developing clinical symptoms.