990 resultados para TREE HEVEA-BRASILIENSIS


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The current high competition on Citrus industry demands from growers new management technologies for superior efficiency and sustainability. In this context, precision agriculture (PA) has developed techniques based on yield mapping and management systems that recognize field spatial variability, which contribute to increase profitability of commercial crops. Because spatial variability is often not perceived the orange orchards are still managed as uniform and adoption of PA technology on citrus farms is low. Thus, the objective of the present study was to characterize the spatial variability of three factors: fruit yield, soil fertility and occurrence of plant gaps caused by either citrus blight or huanglongbing (HLB) in a commercial Valencia orchard in Brotas, São Paulo State, Brazil. Data from volume, geographic coordinates and representative area of the bags used on harvest were recorded to generate yield points that were then interpolated to produce the yield map. Soil chemical characteristics were studied by analyzing samples collected along planting rows and inter-rows in 24 points distributed in the field. A map of density of tree gaps was produced by georeferencing individual gaps and later by counting the number of gaps within 500 m² cells. Data were submitted to statistical and geostatistical analyses. A t test was used to compare means of soil chemical characteristics between sampling regions. High variation on yield and density of tree gaps was observed from the maps. It was also demonstrated overlapping regions of high density of plant absence and low fruit yield. Soil fertility varied depending on the sampling region in the orchard. The spatial variability found on yield, soil fertility and on disease occurrence demonstrated the importance to adopt site specific nutrient management and disease control as tools to guarantee efficiency of fruit production.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Hybridization between incipient species is expected to become progressively limited as their genetic divergence increases and reproductive isolation proceeds. Amphibian radiations and their secondary contact zones are useful models to infer the timeframes of speciation, but empirical data from natural systems remains extremely scarce. Here we follow this approach in the European radiation of tree frogs (Hyla arborea group). We investigated a natural hybrid zone between two lineages (Hyla arborea and Hyla orientalis) of Mio-Pliocene divergence (~5 My) for comparison with other hybrid systems from this group. RESULTS: We found concordant geographic distributions of nuclear and mitochondrial gene pools, and replicated narrow transitions (~30 km) across two independent transects, indicating an advanced state of reproductive isolation and potential local barriers to dispersal. This result parallels the situation between H. arborea and H. intermedia, which share the same amount of divergence with H. orientalis. In contrast, younger lineages show much stronger admixture at secondary contacts. CONCLUSIONS: Our findings corroborate the negative relationship between hybridizability and divergence time in European tree frogs, where 5 My are necessary to achieve almost complete reproductive isolation. Speciation seems to progress homogeneously in this radiation, and might thus be driven by gradual genome-wide changes rather than single speciation genes. However, the timescale differs greatly from that of other well-studied amphibians. General assumptions on the time necessary for speciation based on evidence from unrelated taxa may thus be unreliable. In contrast, comparative hybrid zone analyses within single radiations such as our case study are useful to appreciate the advance of speciation in space and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quest for Orthologs (QfO) is a community effort with the goal to improve and benchmark orthology predictions. As quality assessment assumes prior knowledge on species phylogenies, we investigated the congruency between existing species trees by comparing the relationships of 147 QfO reference organisms from six Tree of Life (ToL)/species tree projects: The National Center for Biotechnology Information (NCBI) taxonomy, Opentree of Life, the sequenced species/species ToL, the 16S ribosomal RNA (rRNA) database, and trees published by Ciccarelli et al. (Ciccarelli FD, et al. 2006. Toward automatic reconstruction of a highly resolved tree of life. Science 311:1283-1287) and by Huerta-Cepas et al. (Huerta-Cepas J, Marcet-Houben M, Gabaldon T. 2014. A nested phylogenetic reconstruction approach provides scalable resolution in the eukaryotic Tree Of Life. PeerJ PrePrints 2:223) Our study reveals that each species tree suggests a different phylogeny: 87 of the 146 (60%) possible splits of a dichotomous and rooted tree are congruent, while all other splits are incongruent in at least one of the species trees. Topological differences are observed not only at deep speciation events, but also within younger clades, such as Hominidae, Rodentia, Laurasiatheria, or rosids. The evolutionary relationships of 27 archaea and bacteria are highly inconsistent. By assessing 458,108 gene trees from 65 genomes, we show that consistent species topologies are more often supported by gene phylogenies than contradicting ones. The largest concordant species tree includes 77 of the QfO reference organisms at the most. Results are summarized in the form of a consensus ToL (http://swisstree.vital-it.ch/species_tree) that can serve different benchmarking purposes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A seasonal period of water deficit characterizes tropical dry forests (TDFs). There, sympatric tree species exhibit a diversity of growth rates, functional traits, and responses to drought, suggesting that each species may possess different strategies to grow under different conditions of water availability. The evaluation of the long-term growth responses to changes in the soil water balance should provide an understanding of how and when coexisting tree species respond to water deficit in TDFs. Furthermore, such differential growth responses may be linked to functional traits related to water storage and conductance. We used dendrochronology and climate data to retrospectively assess how the radial growth of seven coexisting deciduous tree species responded to the seasonal soil water balance in a Bolivian TDF. Linear mixed-effects models were used to quantify the relationships between basal area increment and seasonal water balance. We related these relationships with wood density and sapwood production to assess if they affect the growth responses to climate. The growth of all species responded positively to water balance during the wet season, but such responses differed among species as a function of their wood density. For instance, species with a strong growth response to water availability averaged a low wood density which may facilitate the storage of water in the stem. By contrast, species with very dense wood were those whose growth was less sensitive to water availability. Coexisting tree species thus show differential growth responses to changes in soil water balance during the wet season. Our findings also provide a link between wood density, a trait related to the ability of trees to store water in the stem, and wood formation in response to water availability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alpine tree-line ecotones are characterized by marked changes at small spatial scales that may result in a variety of physiognomies. A set of alternative individual-based models was tested with data from four contrasting Pinus uncinata ecotones in the central Spanish Pyrenees to reveal the minimal subset of processes required for tree-line formation. A Bayesian approach combined with Markov chain Monte Carlo methods was employed to obtain the posterior distribution of model parameters, allowing the use of model selection procedures. The main features of real tree lines emerged only in models considering nonlinear responses in individual rates of growth or mortality with respect to the altitudinal gradient. Variation in tree-line physiognomy reflected mainly changes in the relative importance of these nonlinear responses, while other processes, such as dispersal limitation and facilitation, played a secondary role. Different nonlinear responses also determined the presence or absence of krummholz, in agreement with recent findings highlighting a different response of diffuse and abrupt or krummholz tree lines to climate change. The method presented here can be widely applied in individual-based simulation models and will turn model selection and evaluation in this type of models into a more transparent, effective, and efficient exercise.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of the study was to assess the influence of season and different substrates on rooting of air layers of lychee (Litchi chinensisSonn.) for the production of seedlings to ensure the formation of uniform and productive orchards. Air layers were done in plants of the Bengal cultivar using leafy and healthy woody branches, with about 0.010 to 0.015 m in diameter, in which were performed complete girdling with 0.020 m wide at a distance of 0.30 to 0.40 m below the apex. Then the branches were wrapped in moistened substrate. The layering was made at six times of theyear (January, March, May, July, September and November) and two substrates were used (coconut fiber and sphagnum) in a 6 x 2 factorial design in a randomized block with ten replicates. After 90 days, layers were separated from the matrix plant and evaluated for rooting and callus formation, root number, considering only the primary roots, length, area and volume of the roots, beyond the dry weight of roots and calluses. The months of January, March, September and November showed the best results for all analyzed variables related to rooting. With respect to the substrates, the only difference was in January and March to the root number and dry weight of roots, where the sphagnum showed the best results. The month of July was more conducive to the formation of calluses. The period between September and March was more suitable to the propagation of lychee, when there were rooting percentages above 90%, in addition to the formation of large amount of roots.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to evaluate the response to phosphorus (P) and potassium (K) fertilization and to establish the critical levels of P and K in the soil and in the plant tissue in pear trees. Two experiments were conducted in São Joaquim (SC), Brazil. In experiment 1, the plants received annually the application of increasing rates of phosphate fertilizer (0, 40, 80, 120 and 160 kg P2O5 ha-1), while in experiment 2, increasing rates of potassium fertilizer (0, 40, 80, 120 and 160 kg K2O ha-1) were applied annually. In the two experiments, soil was collected annually from the 0-10, 10-20 and 0-20 cm layers, and the available P (experiment 1) and exchangeable K (experiment 2) content was analyzed. Whole leaves were collected annually, which were subjected to analysis of total P (experiment 1) and total K (experiment 2) content. The number and weight of the fruits per plant and fruit yield were evaluated. Application of P on the soil planted with pear trees increased the nutrient content in the soil and, in most crop seasons, in the whole leaf, but it did not affect the yield components and fruit yield. The application of K on the soil with pear trees increased the nutrient content in the soil and, in most of the crop seasons, in the whole leaf, but the potassium content in the whole leaf decreased in the crop season with greater fruit yield. The yield components and fruit yield were not affected by K fertilization.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Past temperature variations are usually inferred from proxy data or estimated using general circulation models. Comparisons between climate estimations derived from proxy records and from model simulations help to better understand mechanisms driving climate variations, and also offer the possibility to identify deficiencies in both approaches. This paper presents regional temperature reconstructions based on tree-ring maximum density series in the Pyrenees, and compares them with the output of global simulations for this region and with regional climate model simulations conducted for the target region. An ensemble of 24 reconstructions of May-to-September regional mean temperature was derived from 22 maximum density tree-ring site chronologies distributed over the larger Pyrenees area. Four different tree-ring series standardization procedures were applied, combining two detrending methods: 300-yr spline and the regional curve standardization (RCS). Additionally, different methodological variants for the regional chronology were generated by using three different aggregation methods. Calibration verification trials were performed in split periods and using two methods: regression and a simple variance matching. The resulting set of temperature reconstructions was compared with climate simulations performed with global (ECHO-G) and regional (MM5) climate models. The 24 variants of May-to-September temperature reconstructions reveal a generally coherent pattern of inter-annual to multi-centennial temperature variations in the Pyrenees region for the last 750 yr. However, some reconstructions display a marked positive trend for the entire length of the reconstruction, pointing out that the application of the RCS method to a suboptimal set of samples may lead to unreliable results. Climate model simulations agree with the tree-ring based reconstructions at multi-decadal time scales, suggesting solar variability and volcanism as the main factors controlling preindustrial mean temperature variations in the Pyrenees. Nevertheless, the comparison also highlights differences with the reconstructions, mainly in the amplitude of past temperature variations and in the 20th century trends. Neither proxy-based reconstructions nor model simulations are able to perfectly track the temperature variations of the instrumental record, suggesting that both approximations still need further improvements.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Contrasting with birds and mammals, poikilothermic vertebrates often have homomorphic sex chromosomes, possibly resulting from high rates of sex-chromosome turnovers and/or occasional X-Y recombination. Strong support for the latter mechanism was provided by four species of European tree frogs, which inherited from a common ancestor (∼5 Ma) the same pair of homomorphic sex chromosomes (linkage group 1, LG1), harboring the candidate sex-determining gene Dmrt1. Here, we test sex linkage of LG1 across six additional species of the Eurasian Hyla radiation with divergence times ranging from 6 to 40 Ma. LG1 turns out to be sex linked in six of nine resolved cases. Mapping the patterns of sex linkage to the Hyla phylogeny reveals several transitions in sex-determination systems within the last 10 My, including one switch in heterogamety. Phylogenetic trees of DNA sequences along LG1 are consistent with occasional X-Y recombination in all species where LG1 is sex linked. These patterns argue against one of the main potential causes for turnovers, namely the accumulation of deleterious mutations on nonrecombining chromosomes. Sibship analyses show that LG1 recombination is strongly reduced in males from most species investigated, including some in which it is autosomal. Intrinsically low male recombination might facilitate the evolution of male heterogamety, and the presence of important genes from the sex-determination cascade might predispose LG1 to become a sex chromosome.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hybridization by introduced taxa is a major threat to native species. Characterizing human introductions is thus one of the missions of conservation geneticists. Here we survey a declining population of the regionally endangered European tree frog (Hyla arborea) in the Grangettes natural reserve (Rhone valley, Western Switzerland), where previous evidence indicated human introduction of the Italian taxon H. intermedia. We combined fast-evolving mitochondrial and nuclear markers and an extended sampling to conduct population genetic analyses of the Grangettes and putative source areas. We show that the Grangettes population is a hybrid swarm, with all individuals featuring recent nuclear admixture and mitochondrial DNA of introduced H. intermedia, most likely of proximate south Alpine origin. In contrast, H. arborea and H. intermedia hardly introgress in their natural parapatric ranges, consistent with an advanced reproductive isolation. Thus, potential hybrid incompatibilities may account for the strong decline of this population, despite important conservation efforts. Although their hybrid nature makes them a priori unworthy of any protection, we propose specific measures to recover local H. arborea gene pool and preserve tree frogs in the Grangettes, the last population remaining from this heavily impacted part of the Alps.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Available methods to simulate nucleotide or amino acid data typically use Markov models to simulate each position independently. These approaches are not appropriate to assess the performance of combinatorial and probabilistic methods that look for coevolving positions in nucleotide or amino acid sequences. RESULTS: We have developed a web-based platform that gives a user-friendly access to two phylogenetic-based methods implementing the Coev model: the evaluation of coevolving scores and the simulation of coevolving positions. We have also extended the capabilities of the Coev model to allow for the generalization of the alphabet used in the Markov model, which can now analyse both nucleotide and amino acid data sets. The simulation of coevolving positions is novel and builds upon the developments of the Coev model. It allows user to simulate pairs of dependent nucleotide or amino acid positions. CONCLUSIONS: The main focus of our paper is the new simulation method we present for coevolving positions. The implementation of this method is embedded within the web platform Coev-web that is freely accessible at http://coev.vital-it.ch/, and was tested in most modern web browsers.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heterozygosity-fitness correlations (HFCs) have been used to understand the complex interactions between inbreeding, genetic diversity and evolution. Although frequently reported for decades, evidence for HFCs was often based on underpowered studies or inappropriate methods, and hence their underlying mechanisms are still under debate. Here, we used 6100 genome-wide single nucleotide polymorphisms (SNPs) to test for general and local effect HFCs in maritime pine (Pinus pinaster Ait.), an iconic Mediterranean forest tree. Survival was used as a fitness proxy, and HFCs were assessed at a four-site common garden under contrasting environmental conditions (total of 16 288 trees). We found no significant correlations between genome-wide heterozygosity and fitness at any location, despite variation in inbreeding explaining a substantial proportion of the total variance for survival. However, four SNPs (including two non-synonymous mutations) were involved in significant associations with survival, in particular in the common gardens with higher environmental stress, as shown by a novel heterozygosity-fitness association test at the species-wide level. Fitness effects of SNPs involved in significant HFCs were stable across maritime pine gene pools naturally growing in distinct environments. These results led us to dismiss the general effect hypothesis and suggested a significant role of heterozygosity in specific candidate genes for increasing fitness in maritime pine. Our study highlights the importance of considering the species evolutionary and demographic history and different spatial scales and testing environments when assessing and interpreting HFCs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Identifying homology between sex chromosomes of different species is essential to understanding the evolution of sex determination. Here, we show that the identity of a homomorphic sex chromosome pair can be established using a linkage map, without information on offspring sex. By comparing sex-specific maps of the European tree frog Hyla arborea, we find that the sex chromosome (linkage group 1) shows a threefold difference in marker number between the male and female maps. In contrast, the number of markers on each autosome is similar between the two maps. We also find strongly conserved synteny between H. arborea and Xenopus tropicalis across 200 million years of evolution, suggesting that the rate of chromosomal rearrangement in anurans is low. Finally, we show that recombination in males is greatly reduced at the centers of large chromosomes, consistent with previous cytogenetic findings. Our research shows the importance of high-density linkage maps for studies of recombination, chromosomal rearrangement and the genetic architecture of ecologically or economically important traits.