932 resultados para TRANSGENIC ARABIDOPSIS
Resumo:
Wild-type or phyA, phyB, or hy4 mutant Arabidopsis seedlings lacking phytochrome A (phyA), phytochrome B (phyB), or cryptochrome 1 (cry1), respectively, and the double and triple mutants were used in combination with blue-light treatments given simultaneously with red or far-red light. We investigated the interaction between phytochromes and cry1 in the control of hypocotyl growth and cotyledon unfolding. Under conditions deficient for cry1 (short exposures to blue light) or phyB (far-red background), these photoreceptors acted synergistically: Under short exposures to blue light (3 h/d) added to a red-light background, cry1 activity required phyB (e.g. the hy4 mutant was taller than the wild type but the phyBhy4 mutant was not taller than the phyB mutant). Under prolonged exposures to blue light (24 h/d) added to a far-red light background, phyB activity required cry1 (e.g. the phyAphyB mutant was taller than the phyA mutant but the phyAphyBhy4 mutant was not taller than the phyAhy4 mutant). Under more favorable light inputs, i.e. prolonged exposures to blue light added to a red-light background, the effects of cry1 and phyB were independent. Thus, the synergism between phyB and cry1 is conditional. The effect of cry1 was not reduced by the phyA mutation under any tested light condition. Under continuous blue light the triple mutant phyAphyBhy4 showed reduced hypocotyl growth inhibition and cotyledon unfolding compared with the phyAphyB mutant. The action of cry1 in the phyAphyB double mutant was higher under the red-light than the far-red-light background, indicating a synergistic interaction between cry1 and phytochromes C, D, or E; however, a residual action of cry1 independent of any phytochrome is likely to occur.
Resumo:
Single, double, and triple null combinations of Arabidopsis mutants lacking the photoreceptors phytochrome (phy) A (phyA-201), phyB (phyB-5), and cryptochrome (cry) 1 (hy4-2.23n) were examined for de-etiolation responses in high-fluence red, far-red, blue, and broad-spectrum white light. Cotyledon unhooking, unfolding, and expansion, hypocotyl growth, and the accumulation of chlorophylls and anthocyanin in 5-d-old seedlings were measured under each light condition and in the dark. phyA was the major photoreceptor/effector for most far-red-light responses, although phyB and cry1 modulated anthocyanin accumulation in a phyA-dependent manner. phyB was the major photoreceptor in red light, although cry1 acted as a phyA/phyB-dependent modulator of chlorophyll accumulation under these conditions. All three photoreceptors contributed to most blue light deetiolation responses, either redundantly or additively; however, phyB acted as a modulator of cotyledon expansion dependent on the presence of cry1. As reported previously, flowering time in long days was promoted by phyA and inhibited by phyB, with each suppressing the other's effect. In addition to the effector/modulator relationships described above, measurements of hypocotyls from blue-light-grown seedlings demonstrated phytochrome activity in blue light and cry1 activity in a phyAphyB mutant background.
Resumo:
Phosphoribosyl-ATP pyrophosphohydrolase (PRA-PH) and phosphoribosyl-AMP cyclohydrolase (PRA-CH) are encoded by HIS4 in yeast and by hisIE in bacteria and catalyze the second and the third step, respectively, in the histidine biosynthetic pathway. By complementing a hisI mutation of Escherichia coli with an Arabidopsis cDNA library, we isolated an Arabidopsis cDNA (At-IE) that possesses these two enzyme activities. The At-IE cDNA encodes a bifunctional protein of 281 amino acids with a calculated molecular mass of 31,666 D. Genomic DNA-blot analysis with the At-IE cDNA as a probe revealed a single-copy gene in Arabidopsis, and RNA-blot analysis showed that the At-IE gene was expressed ubiquitously throughout development. Sequence comparison suggested that the At-IE protein has an N-terminal extension of about 50 amino acids with the properties of a chloroplast transit peptide. We demonstrated through heterologous expression studies in E. coli that the functional domains for the PRA-CH (hisI) and PRA-PH (hisE) resided in the N-terminal and the C-terminal halves, respectively, of the At-IE protein.
Resumo:
Two yeast genes, FRE1 and FRE2 (encoding Fe(III) reductases) were placed under the control of the cauliflower mosaic virus 35S promoter and introduced into tobacco (Nicotiana tabacum L.) via Agrobacterium tumefaciens-mediated transformation. Homozygous lines containing FRE1, FRE2, or FRE1 plus FRE2 were generated. Northern-blot analyses revealed mRNA of two different sizes in FRE1 lines, whereas all FRE2 lines had mRNA only of the expected length. Fe(III) reduction, chlorophyll contents, and Fe levels were determined in transgenic and control plants under Fe-sufficient and Fe-deficient conditions. In a normal growth environment, the highest root Fe(III) reduction, 4-fold higher than in controls, occurred in the double transformant (FRE1 + FRE2). Elevated Fe(III) reduction was also observed in all FRE2 and some FRE1 lines. The increased Fe(III) reduction occurred along the entire length of the roots and on shoot sections. FRE2 and double transformants were more tolerant to Fe deficiency in hydroponic culture, as shown by higher chlorophyll and Fe concentrations in younger leaves, whereas FRE1 transformants did not differ from the controls. Overall, the beneficial effects of FRE2 were consistent, suggesting that FRE2 may be used to improve Fe efficiency in crop plants.
Resumo:
Opium poppy (Papaver somniferum) contains a large family of tyrosine/dihydroxyphenylalanine decarboxylase (tydc) genes involved in the biosynthesis of benzylisoquinoline alkaloids and cell wall-bound hydroxycinnamic acid amides. Eight members from two distinct gene subfamilies have been isolated, tydc1, tydc4, tydc6, tydc8, and tydc9 in one group and tydc2, tydc3, and tydc7 in the other. The tydc8 and tydc9 genes were located 3.2 kb apart on one genomic clone, suggesting that the family is clustered. Transcripts for most tydc genes were detected only in roots. Only tydc2 and tydc7 revealed expression in both roots and shoots, and TYDC3 mRNAs were the only specific transcripts detected in seedlings. TYDC1, TYDC8, and TYDC9 mRNAs, which occurred in roots, were not detected in elicitor-treated opium poppy cultures. Expression of tydc4, which contains a premature termination codon, was not detected under any conditions. Five tydc promoters were fused to the β-glucuronidase (GUS) reporter gene in a binary vector. All constructs produced transient GUS activity in microprojectile-bombarded opium poppy and tobacco (Nicotiana tabacum) cell cultures. The organ- and tissue-specific expression pattern of tydc promoter-GUS fusions in transgenic tobacco was generally parallel to that of corresponding tydc genes in opium poppy. GUS expression was most abundant in the internal phloem of shoot organs and in the stele of roots. Select tydc promoter-GUS fusions were also wound induced in transgenic tobacco, suggesting that the basic mechanisms of developmental and inducible tydc regulation are conserved across plant species.
Resumo:
During oil deposition in developing seeds of Arabidopsis, photosynthate is imported in the form of carbohydrates into the embryo and converted to triacylglycerols. To identify genes essential for this process and to investigate the molecular basis for the developmental regulation of oil accumulation, mutants producing wrinkled, incompletely filled seeds were isolated. A novel mutant locus, wrinkled1 (wri1), which maps to the bottom of chromosome 3 and causes an 80% reduction in seed oil content, was identified. Wild-type and homozygous wri1 mutant plantlets or mature plants were indistinguishable. However, developing homozygous wri1 seeds were impaired in the incorporation of sucrose and glucose into triacylglycerols, but incorporated pyruvate and acetate at an increased rate. Because the activities of several glycolytic enzymes, in particular hexokinase and pyrophosphate-dependent phosphofructokinase, are reduced in developing homozygous wri1 seeds, it is suggested that WRI1 is involved in the developmental regulation of carbohydrate metabolism during seed filling.
Resumo:
Protoplasts isolated from red-light-adapted Arabidopsis hypocotyls and incubated under red light exhibited rapid and transient shrinking within a period of 20 min in response to a blue-light pulse and following the onset of continuous blue light. Long-persisting shrinkage was also observed during continuous stimulation. Protoplasts from a hy4 mutant and the phytochrome-deficient phyA/phyB double mutant of Arabidopsis showed little response, whereas those from phyA and phyB mutants showed a partial response. It is concluded that the shrinking response itself is mediated by the HY4 gene product, cryptochrome 1, whereas the blue-light responsiveness is strictly controlled by phytochromes A and B, with a greater contribution by phytochrome B. It is shown further that the far-red-absorbing form of phytochrome (Pfr) was not required during or after, but was required before blue-light perception. Furthermore, a component that directly determines the blue-light responsiveness was generated by Pfr after a lag of 15 min over a 15-min period and decayed with similar kinetics after removal of Pfr by far-red light. The anion-channel blocker 5-nitro-2-(3-phenylpropylamino)-benzoic acid prevented the shrinking response. This result, together with those in the literature and the kinetic features of shrinking, suggests that anion channels are activated first, and outward-rectifying cation channels are subsequently activated, resulting in continued net effluxes of Cl− and K+. The postshrinking volume recovery is achieved by K+ and Cl− influxes, with contribution by the proton motive force. External Ca2+ has no role in shrinking and the recovery. The gradual swelling of protoplasts that prevails under background red light is shown to be a phytochrome-mediated response in which phytochrome A contributes more than phytochrome B.
Resumo:
Plastoquinone and tocopherols are the two major quinone compounds in higher plant chloroplasts and are synthesized by a common pathway. In previous studies we characterized two loci in Arabidopsis defining key steps of this biosynthetic pathway. Mutation of the PDS1 locus disrupts the activity of p-hydroxyphenylpyruvate dioxygenase (HPPDase), the first committed step in the synthesis of both plastoquinone and tocopherols in plants. Although plants homozygous for the pds1 mutation could be rescued by growth in the presence of homogentisic acid, the product of HPPDase, we were unable to determine if the mutation directly or indirectly disrupted HPPDase activity. This paper reports the isolation of a cDNA, pHPPD, encoding Arabidopsis HPPDase and its functional characterization by expression in both plants and Escherichia coli. pHPPD encodes a 50-kD polypeptide with homology to previously identified HPPDases, including 37 highly conserved amino acid residues clustered in the carboxyl region of the protein. Expression of pHPPD in E. coli catalyzes the accumulation of homogentisic acid, indicating that it encodes a functional HPPDase enzyme. Mapping of pHPPD and co-segregation analysis of the pds1 mutation and the HPPD gene indicate tight linkage. Constitutive expression of pHPPD in a pds1 mutant background complements this mutation. Finally, comparison of the HPPD genomic sequences from wild type and pds1 identified a 17-bp deletion in the pds1 allele that results in deletion of the carboxyterminal 26 amino acids of the HPPDase protein. Together, these data conclusively demonstrate that pds1 is a mutation in the HPPDase structural gene.
Resumo:
Hydroperoxide lyase (HPL) cleaves lipid hydroperoxides to produce volatile flavor molecules and also potential signal molecules. We have characterized a gene from Arabidopsis that is homologous to a recently cloned HPL from green pepper (Capsicum annuum). The deduced protein sequence indicates that this gene encodes a cytochrome P-450 with a structure similar to that of allene oxide synthase. The gene was cloned into an expression vector and expressed in Escherichia coli to demonstrate HPL activity. Significant HPL activity was evident when 13S-hydroperoxy-9(Z),11(E),15(Z)-octadecatrienoic acid was used as the substrate, whereas activity with 13S-hydroperoxy-9(Z),11(E)-octadecadienoic acid was approximately 10-fold lower. Analysis of headspace volatiles by gas chromatography-mass spectrometry, after addition of the substrate to E. coli extracts expressing the protein, confirmed enzyme-activity data, since cis-3-hexenal was produced by the enzymatic activity of the encoded protein, whereas hexanal production was limited. Molecular characterization of this gene indicates that it is expressed at high levels in floral tissue and is wound inducible but, unlike allene oxide synthase, it is not induced by treatment with methyl jasmonate.
Resumo:
Two distinct cDNA clones encoding for the glutamate decarboxylase (GAD) isoenzymes GAD1 and GAD2 from Arabidopsis (L.) Heynh. were characterized. The open reading frames for GAD1 and GAD2 were expressed in Escherichia coli and the recombinant proteins were purified by affinity chromatography. Analysis of the recombinant proteins by sodium dodecyl sulfate-polyacrylamide gel electrophoresis and immunoblot analysis suggest that GAD1 and GAD2 encode for 58- and 56-kD peptides, respectively. The enzymatic activities of the pure recombinant GAD1 and GAD2 proteins were stimulated 35- and 13-fold, respectively, by Ca2+/calmodulin but not by Ca2+ or calmodulin alone. Southern-blot analysis of genomic DNA suggests that there is only one copy of each gene in Arabidopsis. The GAD1 transcript and a corresponding 58-kD peptide were detected in roots only. Conversely, the GAD2 transcript and a corresponding 56-kD peptide were detected in all organs tested. The specific activity, GAD2 transcript, and 56-kD peptide increased in leaves of plants treated with 10 mm NH4Cl, 5 mm NH4NO3, 5 mm glutamic acid, or 5 mm glutamine as the sole nitrogen source compared with samples from plants treated with 10 mm KNO3. The results from these experiments suggest that in leaves GAD activity is partially controlled by gene expression or RNA stability. Results from preliminary analyses of different tissues imply that these tendencies were not the same in flower stalks and flowers, suggesting that other factors may control GAD activity in these organs. The results from this investigation demonstrate that GAD activity in leaves is altered by different nitrogen treatments, suggesting that GAD2 may play a unique role in nitrogen metabolism.
Resumo:
The CCAAT motif is found in the promoters of many eukaryotic genes. In yeast a single complex of three proteins, termed HAP2, HAP3, and HAP5, binds to this sequence, and in mammals the three components of the equivalent complex (called variously NF-Y, CBF, or CP1) are also represented by single genes. Here we report the presence of multiple genes for each of the components of the CCAAT-binding complex, HAP2,3,5, from Arabidopsis. Three independent Arabidopsis HAP subunit 2 (AtHAP2) cDNAs were cloned by functional complementation of a yeast hap2 mutant, and two independent forms each of AtHAP3 and AtHAP5 cDNAs were detected in the expressed sequence tag database. Additional homologs (two of AtHAP3 and one of AtHAP5) have been identified from available Arabidopsis genomic sequences. Northern-blot analysis indicated ubiquitous expression for each AtHAP2 and AtHAP5 cDNA in a range of tissues, whereas expression of each AtHAP3 cDNA was under developmental and/or environmental regulation. The unexpected presence of multiple forms of each HAP homolog in Arabidopsis, compared with the single genes in yeast and vertebrates, suggests that the HAP2,3,5 complex may play diverse roles in gene transcription in higher plants.
Resumo:
We analyzed transgenic tobacco (Nicotiana tabacum L.) expressing Stpd1, a cDNA encoding sorbitol-6-phosphate dehydrogenase from apple, under the control of a cauliflower mosaic virus 35S promoter. In 125 independent transformants variable amounts of sorbitol ranging from 0.2 to 130 μmol g−1 fresh weight were found. Plants that accumulated up to 2 to 3 μmol g−1 fresh weight sorbitol were phenotypically normal, with successively slower growth as sorbitol amounts increased. Plants accumulating sorbitol at 3 to 5 μmol g−1 fresh weight occasionally showed regions in which chlorophyll was partially lost, but at higher sorbitol amounts young leaves of all plants lost chlorophyll in irregular spots that developed into necrotic lesions. When sorbitol exceeded 15 to 20 μmol g−1 fresh weight, plants were infertile, and at even higher sorbitol concentrations the primary regenerants were incapable of forming roots in culture or soil. In mature plants sorbitol amounts varied with age, leaf position, and growth conditions. The appearance of lesions was correlated with high sorbitol, glucose, fructose, and starch, and low myo-inositol. Supplementing myo-inositol in seedlings and young plants prevented lesion formation. Hyperaccumulation of sorbitol, which interferes with inositol biosynthesis, seems to lead to osmotic imbalance, possibly acting as a signal affecting carbohydrate allocation and transport.
Resumo:
Chloroplast glycerolipids in a number of higher-plant species, including Arabidopsis thaliana, are synthesized by two distinct pathways termed the prokaryotic and eukaryotic pathways. The molecules of galactolipids produced by the prokaryotic pathway contain substantial amounts of hexadecatrienoic acid fatty acid. Here we describe a new class of mutants, designated gly1, with reduced levels of hexadecatrienoic acid. Lipid fatty acid profiles indicated that gly1 mutants exhibited a reduced carbon flux through the prokaryotic pathway that was compensated for by an increased carbon flux through the eukaryotic pathway. Genetic and biochemical approaches revealed that the gly1 phenotype could not be explained by a deficiency in the enzymes of the prokaryotic pathway. The flux of fatty acids into the prokaryotic pathway is sensitive to changes in glycerol-3-phosphate (G3P) availability, and the chloroplast G3P pool can be increased by exogenous application of glycerol to leaves. Exogenous glycerol treatment of gly1 plants allowed chemical complementation of the mutant phenotype. These results are consistent with a mutant lesion affecting the G3P supply within the chloroplast. The gly1 mutants may therefore help in determining the pathway for synthesis of chloroplast G3P.
Resumo:
The Sec1p family of proteins is required for vesicle-mediated protein trafficking between various organelles of the endomembrane system. This family includes Vps45p, which is required for transport to the vacuole in yeast (Saccharomyces cerevisiae). We have isolated a cDNA encoding a VPS45 homolog from Arabidopsis thaliana (AtVPS45). The cDNA is able to complement both the temperature-sensitive growth defect and the vacuolar-targeting defect of a yeast vps45 mutant, indicating that the two proteins are functionally related. AtVPS45p is a peripheral membrane protein that associates with microsomal membranes. Sucrose-density gradient fractionation demonstrated that AtVPS45p co-fractionates with AtELP, a potential vacuolar protein sorting receptor, implying that they may reside on the same membrane populations. These results indicate that AtVPS45p is likely to function in the transport of proteins to the vacuole in plants.
Resumo:
cDNA corresponding to the GA4 gene of Arabidopsis thaliana L. (Heynh.) was expressed in Escherichia coli, from which cell lysates converted [14C]gibberellin (GA)9 and [14C]GA20 to radiolabeled GA4 and GA1, respectively, thereby confirming that GA4 encodes a GA 3β-hydroxylase. GA9 was the preferred substrate, with a Michaelis value of 1 μm compared with 15 μm for GA20. Hydroxylation of these GAs was regiospecific, with no indication of 2β-hydroxylation or 2,3-desaturation. The capacity of the recombinant enzyme to hydroxylate a range of other GA substrates was investigated. In general, the preferred substrates contained a polar bridge between C-4 and C-10, and 13-deoxy GAs were preferred to their 13-hydroxylated analogs. Therefore, no activity was detected using GA12-aldehyde, GA12, GA19, GA25, GA53, or GA44 as the open lactone (20-hydroxy-GA53), whereas GA15, GA24, and GA44 were hydroxylated to GA37, GA36, and GA38, respectively. The open lactone of GA15 (20-hydroxy-GA12) was hydroxylated but less efficiently than GA15. In contrast to the free acid, GA25 19,20-anhydride was 3β-hydroxylated to give GA13. 2,3-Didehydro-GA9 and GA5 were converted by recombinant GA4 to the corresponding epoxides 2,3-oxido-GA9 and GA6.