987 resultados para THYROID-HORMONE RECEPTORS
Resumo:
The Wistar Audiogenic Rat (WAR) strain is a genetic model of sound-induced reflex epilepsy which was selected starting from audiogenic seizures susceptible Wistar rats. Wistar resistant rats were used as WAR`s control in this study. In the acute situation, audiogenic seizures (AS) in WARs mimic tonic-clonic seizures and, in the chronic protocol, mimic temporal lobe epilepsy. AS have been shown to evoke neuroendocrine responses; however, the hypothalamic-pituitary-adrenal activity in the WAR has not been established. The aim of this study was to evaluate the hypothalamic-pituitary-adrenal axis (HPA) responses to exogenous ACTH stimulation (8 ng/rat), fifteen minute restraint stress and circadian variation (8 am and 8 pm) under rest conditions in these animals through plasma measurements of ACTH and corticosterone concentrations. We also measured the body weight from birth to the 9th week of life and determined adrenal gland weight. We found that WARs are smaller than Wistar and presented a higher adrenal gland weight with a higher level of corticosterone release after intravenous ACTH injection. They also showed altered HPA axis circadian rhythms and responses to restraint stress. Our data indicate that, despite the lower body weight, WARs have increased adrenal gland weight associated with enhanced pituitary and adrenal responsiveness after HPA axis stimulation. Thus, we propose WARs as a model to study stress-epilepsy interactions and epilepsy-neuropsychiatry comorbidities. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
LH increases the intracellular Ca(2+) concentration ([Ca(2+)](i)) in mice Leydig cells, in a process triggered by calcium influx through T-type Ca(2+) channels. Here we show that LH modulates both T-type Ca(2+) currents and [Ca(2+)]; transients through the effects of PKA and PKC. LH increases the peak calcium current (at -20 mV) by 40%. A similar effect is seen with PMA. The effect of LH is completely blocked by the PKA inhibitors H89 and a synthetic inhibitory peptide (IP-20), but only partially by chelerythrine (PKC inhibitor). LH and the blockers induced only minor changes in the voltage dependence of activation, inactivation or deactivation of the currents. Staurosporine (blocker of PKA and PKC) impaired the [Ca(2+)](i) changes induced by LH. A similar effect was seen with H89. Although PMA slowly increased the [Ca(2+)](i) the subsequent addition of LH still triggered the typical transients in [Ca(2+)](i). Chelerythrine also does not avoid the Ca(2+) transients, showing that blockage of PKC is not sufficient to inhibit the LH induced [Ca(2+)](i) rise. In summary, these two kinases are not only directly involved in promoting testosterone synthesis but also act on the overall calcium dynamics in Leydig cells, mostly through the activation of PKA by LH. (c) 2011 Elsevier Ltd. All rights reserved.
Resumo:
BACKGROUND AND PURPOSE The P2X receptor family consists of seven subunit types - P2X1-P2X7. All but P2X6 are able to assemble as homotrimers. In addition, various subunit permutations have been reported to form heterotrimers. Evidence for heterotrimer formation includes co-localization, co-immunoprecipitation and the generation of receptors with novel functional properties; however, direct structural evidence for heteromer formation, such as chemical cross-linking and single-molecule imaging, is available in only a few cases. Here we examined the nature of the interaction between two pairs of subunits - P2X2 and P2X4, and P2X4 and P2X7. EXPERIMENTAL APPROACH We used several experimental approaches, including in situ proximity ligation, co-immunoprecipitation, co-isolation on affinity beads, chemical cross-linking and atomic force microscopy (AFM) imaging. KEY RESULTS Both pairs of subunits co-localize upon co-transfection, interact intimately within cells, and can be co-immunoprecipitated and co-isolated from cell extracts. Despite this, chemical cross-linking failed to show evidence for heteromer formation. AFM imaging of isolated receptors showed that all three subunits had the propensity to form receptor dimers. This self-association is likely to account for the observed close interaction between the subunit pairs, in the absence of true heteromer formation. CONCLUSIONS AND IMPLICATIONS We conclude that both pairs of receptors interact in the form of distinct homomers. We urge caution in the interpretation of biochemical evidence indicating heteromer formation in other cases.
Resumo:
arginine-vasopressin in the parvocellular neurons of the hypothalamic paraventricular nucleus is known to play an important role in the control of the hypothalamo-pituitary-adrenal axis. In the present study, we verify plasma corticosterone levels, the distribution of glucocorticoid receptor- and arginine-vasopressin-positive neurons, and the co-localization of both glucocorticoid receptors and arginine-vasopressin in neurons in the anterior and medial parvocellular subdivisions of the paraventricular nucleus after manipulations of the hypothalamus-pituitary-adrenal axis. Normal, sham surgery, and adrenalectomized male rats were subjected to intraperitoneal injections of saline or dexamethasone to measure plasma corticosterone levels by a radioimmunoassay. We also examined arginine-vasopressin and glucocorticoid receptor immunofluorescence in sections from the paraventricular nucleus. Our results showed that the immunoreactivity of arginine-vasopressin neurons increased in the anterior parvocellular subdivision and decreased in the medial parvocellular subdivision from adrenalectomized rats treated with dexamethasone. On the other hand, we showed that the immunoreactivity of glucocorticoid receptors increased in the anterior and medial parvocellular subdivisions of these same animals. However, the immunoreactivity of glucocorticoid receptors is higher in the medial parvocellular than anterior parvocellular subdivision. The co-localization of arginine-vasopressin and glucocorticoid receptors was found only in the medial parvocellular subdivision. These findings indicate that glucocorticoids have direct actions on arginine-vasopressin-positive neurons in the medial parvocellular but not anterior parvocellular subdivision. There is a differentiated pattern of arginine-vasopressin-positive neuron expression between the anterior and medial parvocellular subdivisions. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The endocannabinoid system includes important signaling molecules that are involved in several homeostatic and neuroendocrine functions. In the present study, we evaluated the effects of the type 1 cannabinoid (CB(1)) receptor antagonist, rimonabant (10 mg/kg, p.o.), on hormone secretion, neuronal activation and mRNA expression in the hypothalamus following isotonic (I-) or hypertonic (H-) extracellular volume expansion (EVE). The total nitrate content in the PVN and SON was also assessed under the same experimental conditions. Our results showed that OT and AVP plasma concentrations were increased in response to H-EVE, while decreased AVP levels were found following I-EVE. Accordingly, both I- and H-EVE stimulated oxytocinergic neuronal activation, as evidenced by the increased number of c-Fos/OT double labeled neurons in the hypothalamus. The vasopressinergic cells of the PVN and SON, however, were only activated in response to H-EVE. Furthermore, increased amounts of both AVP and OT mRNAs were found in the hypothalamus following EVE. Pretreatment with rimonabant significantly potentiated hormone secretion and also vasopressinergic and oxytocinergic neuronal activation induced by EVE, although decreased AVP and OT mRNA expression was found in the hypothalami of rimonabant pretreated groups. In addition, the nitrate content in the PVN and SON was not altered in response to EVE or rimonabant pretreatment. Taken together, these results suggest that the CB(1) receptor may modulate several events that contribute to the development of appropriate responses to increased fluid volume and osmolality. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
Tonic immobility (TI) is an innate defensive behaviour elicited by physical restriction and Postural inversion, and is characterised by a profound and temporary state of akinesis. Our previous studies demonstrated that glutamatergic stimulation of the dorsomedial/dorsolateral Portion of periaqueductal gray matter (dPAG) decreases the duration of TI in guinea pigs (Cavia porcellus). Furthermore, evidence suggests that the anterior cingulate cortex (ACC) constitutes an important Source of glutamate for the dPAG. Hence, in the current study, we investigated the effects of microinjection of the excitatory amino acid (EAA) agonist DL-homocysteic acid (DLH) and the N-methyl-D-aspartate (NMDA) receptor antagonist MK-801 into the ACC on the duration of TI in guinea pigs. We also assessed the effect of the NMDA receptor antagonist (MK-801) into the dorsal periaqueductal gray matter (dPAG) prior to DLH microinjection into the ACC on the TI duration in the guinea pig. Our results demonstrated that DLH microinjections into the ACC decreased the duration of TI. This effect was blocked by previous MK-801 microinjections into the ACC or into the dPAG. The MK-801 microinjections alone did not influence TI duration. These results provide the new insight that EAAs in the ACC can decrease the duration of TI. The mechanism seems to be dependent on the NMDA receptors present in the ACC and in the dPAG. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Tonic immobility (TI) is an innate defensive behavior characterized by a state of physical inactivity and diminished responsiveness to environmental stimuli. Behavioral adaptations to changes in the external and internal milieu involve complex neuronal network activity and a large number of chemical neurotransmitters. The TI response is thought to be influenced by serotonin (5-HT) activity in the central nervous system (CNS) of vertebrates, but the neuronal groups involved in the mechanisms underlying this behavior are poorly understood. Owing to its extensive afferents and efferents, the dorsal raphe nucleus (DRN) has been implicated in a great variety of physiological and behavioral functions. in the current study, we investigated the influence of serotonergic 5-HT(1A) and 5-HT(2) receptor activity within the DRN on the modulation of TI behavior in the guinea pig. Microinjection of a 5-HT(1A) receptor agonist (8-OH-DPAT, 0.01 and 0.1 mu g) decreased TI behavior, an effect blocked by pretreatment with WAY-100635 (0.033 mu g), a 5-HT(1A) antagonist. In contrast, activation of 5-HT(2) receptors within the DRN (alpha-methyl-5-HT, 0.5 mu g) increased the TI duration, and this effect could be reversed by pretreatment with an ineffective dose (0.01 mu g) of ketanserine. Since the 5-HT(1A) and 5-HT(2) agonists decreased and increased, respectively, the duration of TI, different serotonin receptor subtypes may play distinct roles in the modulation of TI in the guinea pig. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The hypothalamus-pituitary-adrenal axis (HPA) participates in mediating the response to stressful stimuli. Within the HPA, neurons in the medial parvocellular region of paraventricular nucleus (PVN) of the hypothalamus integrate excitatory and inhibitory signals triggering secretion of corticotropin-releasing hormone (CRH), the main secretagogue of adrenocorticotropic hormone (ACTH). Stressful situations alter CRH secretion as well as other hormones, including prolactin and oxytocin. Most inputs to the PVN are of local origin, half of which are GABAergic neurons, and both GABA-A and GABA-B receptors are present in the PVN. The objective of the present study was to investigate the role of GABA-A and GABA-B receptors in the PVN`s control of stress-induced corticosterone, oxytocin and prolactin secretion. Rats Were microinjected with saline or different doses (0.5, 5 and 50 pmol) of GABA-A (bicuculine) or GABA-B (phaclofen) antagonists in the PVN. Ten minutes later, they were subjected to a stressor (ether inhalation) and blood samples were collected 30 min before and 10, 30, 60, 90 and 120 min after the stressful stimulus to measure hormone levels by radioimmunoassay. Our results indicate that GABA acts in the PVN to inhibit stress-induced corticosterone secretion via both its receptor subtypes, especially GABA-B. In contrast, GABA in the PVN stimulates oxytocin secretion through GABA-B receptors and does not alter prolactin secretion. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
Cannabinoids have been shown to modulate central autonomic regulation and baroreflex control of blood pressure. Both CB1 and CB2 cannabinoid receptors have been described in the nucleus tractus solitarius (NTS), which receives direct afferent projections of cardiovascular reflexes. in the present study we evaluated the effects of WIN 55212-2 (WIN), a cannabinoid agonist, on fast neurotransmission in the NTS. We recorded spontaneous post-synaptic currents using the whole-cell configuration in NTS cells in brainstem slices from young rats (25-30 days old). Application of 5 mu M WIN inhibited the frequency of both glutamatergic and GABAergic sPSCs, without affecting their amplitudes. Effects of WIN were not blocked by application of the CB1 antagonist AM251, the CB2 antagonist AM630 or the varmiloid receptor TRPV1 antagonist AMG9810, suggesting that the effect of WIN is via a non-CB1 non-CB2 receptor. Neither the CB1/CB2 agonist HU210 nor the CB1 agonist ACPA affected the frequency of sPSCs. We conclude WIN inhibits the neurotransmission in the NTS of young rats via a receptor distinct from CB1 or CB2. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Purpose: To correlate ovarian reserve (OR) markers with response in assisted reproduction techniques (ART) and determine their ability to predict poor response among patients with endometriosis (EDT). Methods: We evaluated ART cycles of 27 women with EDT and 50 with exclusive male factor. Basal follicle stimulating hormone (FSH) and anti-mullerian hormone (AMH) levels were determined. Ovarian response to gonadotropin stimulation was assessed and correlation coefficients calculated between the variables and reserve markers. Areas under the curve (AUC) determined ability of tests to predict poor response. Results: AMH was significantly correlated with response in both groups and it was the only marker with significant discriminative capacity to predict poor response among EDT (AUC = 0.842; 95% CI: 0.651-0.952) and control group (AUC = 0.869; 95% CI: 0.743-0.947). Conclusion: Infertile patients with endometriosis can benefit from the pre-therapeutic assessment of OR markers. However, regardless of disease presence, only AMH predicts poor response to stimulus.
Resumo:
This study investigates the efficacy of clinical criteria in selecting patients for primary tamoxifen therapy. A total of 60 breast cancer patients with large primary tumors and unknown hormonal receptor status were subjected to primary hormone therapy. Inclusion criteria were age over 60 years old or menopausal status for at least 10 years and no clinical evidence of inflammatory disease and fast tumor growth. The objective response rate was 55%. There was a positive correlation between the lack of clinical response and axillary lymph node metastasis (p = 0.009). Patients with objective response had significantly improved disease-free (p = 0.045) and overall (p = 0.0002) survival over those who did not have response to hormonal therapy. In multivariate analysis, the clinical response to therapy was the most powerful prognostic factor. This analysis demonstrates that clinical criteria were very effective predictor of response to neo-adjuvant hormone therapy in large breast tumors for postmenopausal women. Response to therapy is the major prognostic factor in primary tamoxifen-treated breast cancer.
Resumo:
We compared the effects of levonorgestrel-releasing intrauterine devices (LNG-IUD) and a gonadotropin-releasing hormone agonist (GnRHa) on uterine volume, uterine arteries pulsatility index (PI) and endometrial thickness before and after six months of endometriosis treatment. Sixty women aged 18-40 y were allocated randomly to one of two groups: LNG-IUDs were inserted in 30 women, and GnRHa monthly injections were performed on the other 30. All 60 women were submitted to transvaginal 2-D ultrasound scans on the day that the treatment started and then six months later. Measurements of uterine arteries PI, uterine volume and endometrial thickness were performed at both evaluations. The use of LNG-IUDs significantly decreased endometrial thickness (pre = 6.08 +/- 3.00 mm, post = 2.7 +/- 0.98 mm; mean +/- SD), as did the use of GnRHa (pre = 6.96 +/- 3.82 mm, post = 3.23 +/- 2.32 mm). The uterine volume decreased in the GnRHa group (pre = 86.67 +/- 28.38 cm(3), Post = 55.27 +/- 25.52 cm(3)), but not in the LNG-IUD group (pre = 75.77 +/- 20.88 cm(3), post = 75.97 +/- 26.62 cm(3)). Uterine arteries PI increased for both groups; however, the increase was higher in the GnRHa group (0.99 +/- 0.84 vs. 0.38 +/- 0.84, p = 0.007; PI increase in GnRHa and in LNG-IUD groups, respectively). In conclusion, levonorgestrel released directly onto the endometrium by the LNG-IUD induced smaller uterine changes than did the hypoestrogenism induced by GnRHa. Nevertheless, both promoted similar effects on endometrial thickness. (E-mail: wpmartins@gmail.com) (C) 2008 World Federation for Ultrasound in Medicine & Biology.
Resumo:
Objectives To determine the effects of low-dose transdermal hormone therapy (HT) on systolic (SBP) and diastolic (DBP) blood pressure (BP) evaluated by 24-h ambulatory blood pressure monitoring (ABPM) in hypertensive postmenopausal women. Methods The study was conducted on 24 hypertensive postmenopausal women aged, on average, 54 years and under treatment with enalapril maleate (10-20 mg/day) combined or not with hydrochlorothiazide (25 mg/day). Thirteen women used a transdermal adhesive containing estradiol and norethisterone (25 and 125 mu g active substance/day, respectively) and 11 did not receive HT. ABPM, lipid profile, and climacteric symptoms were evaluated before and 3 and 6 months after treatment. Results After 3 and 6 months of follow-up, there was a statistically significant reduction of the Blatt-Kupperman menopausal index in the treated group (19.6 +/- 8.3 vs. 9.6 +/- 5.9 vs. 9.7 +/- 7.0; P=0.01). No significant difference in any of the ABPM variables (areas under the systolic and diastolic curves, mean SBP and DBP, SBP and DBP loads and wakefulness-sleep variation) or in the lipid profile was observed between or within groups at the three time points studied. Conclusion Low-dose transdermal HT administered for 6 months was effective in improving climacteric symptoms and did not change BP values or circadian pattern in postmenopausal women with mild-to-moderate arterial hypertension taking antihypertensive medications.
Resumo:
Context: Melanocortin receptor 4 (MC4R) deficiency is characterized by increased linear growth greater than expected for the degree of obesity. Objective: The objective of the investigation was to study the somatotroph axis in obese MC4R-deficient patients and equally obese controls. Patients and Methods: We obtained anthropometric measurements and insulin concentrations in 153 MC4R-deficient subjects and 1392 controls matched for age and severity of obesity. We measured fasting IGF-I, IGF-II, IGF binding protein (IGFBP)-1, IGFBP-3, and acid-labile subunit levels in a subset of 33 MC4R-deficient patients and 36 control subjects. We examined pulsatile GH secretion in six adult MC4R-deficient subjects and six obese controls. Results: Height so score was significantly greater in MC4R-deficient children under 5 yr of age compared with controls (mean +/- SEM: 2.3 +/- 0.06 vs. 1.8 +/- 0.04, P < 0.001), an effect that persisted throughout childhood. Final height (cm) was greater in MC4R-deficient men (mean +/- SEM 173 +/- 2.5 vs. 168 +/- 2.1, P < 0.001) and women (mean 165 +/- 2.1 vs. 158 +/- 1.9, P < 0.001). Fasting IGF-I, IGF-II, acid-labile subunit, and IGFBP-3 concentrations were similar in the two groups. GH levels were markedly suppressed in obese controls, but pulsatile GH secretion was retained in MC4R deficiency. The mean maximal GH secretion rate per burst (P < 0.05) and mass per burst (P < 0.05) were increased in MC4R deficiency, consistent with increased pulsatile and total GH secretion. Fasting insulin levels were markedly elevated in MC4R-deficient children. Conclusions: In MC4R deficiency, increased linear growth in childhood leads to increased adult final height, greater than predicted by obesity alone. GH pulsatility is maintained in MC4R deficiency, a finding consistent with animal studies, suggesting a role for MC4R in controlling hypothalamic somatostatinergic tone. Fasting insulin levels are significantly higher in children carrying MC4R mutations. Both of these factors may contribute to the accelerated growth phenotype characteristic of MC4R deficiency. (J Clin Endocrinol Metab 96: E181-E188, 2011)