898 resultados para THYMOCYTE APOPTOSIS
Resumo:
Prostate Cancer is a disease that primarily affects elderly men. The incidence of prostate cancer has been progressively increasing in the western world over the last two decades. Life expectancy and diet are believed to be the main factors contributing to this increase in prevalence. Prostate cancer is a slowly progressing disorder and patients often live for over 10 years after initially being diagnosed with prostate cancer. However, patients with hormone refractory prostate cancer have a poor prognosis and generally do not survive for longer than 2 or 3 years. Hormone refractory prostate cancer is responsible for over 200,000 deaths each year and current chemotherapeutic regimens are only useful as palliative agents. The long-term survival rate is poor and chemotherapy does not significantly increase this. Cell lines derived from hormone refractory tumours usually display elevated resistance to many cytotoxic drugs. The Fas receptor is a membrane bound protein capable of binding to a ligand called Fas ligand. Engagement of Fas receptor with Fas ligand results in clustering of Fas receptor on the plasma membrane of cells. A number of proteins responsible for initiating apoptosis are recruited to the plasma membrane and are activated in response to elevated local concentrations. This series of events initiates a proteolysis cascade and that culminates in the degradation of structural and enzymatic processes and the repackaging of cellular constituents within membrane bound vesicles that can be endocytosed and recycled by surrounding phagocytic cells. The Fas receptor is believed to be a key mechanism by which immune cells can destroy damaged cells. Consequently, resistance to Fas receptor mediated apoptosis often correlates with tumour progression. It has been reported that prostate cancer cell lines display elevated resistance to Fas receptor mediated apoptosis and this correlates with the stage of tumour from which the cell lines were isolated. JNK, a stress-activated protein kinase, has been implicated both with increased survival and increased apoptosis in prostate cancer. Elevated endogenous JNK activity has been demonstrated to correlate with prostate cancer progression. It has been shown that endogenous JNK activity increases the expression of anti-apoptotic proteins and can increase the resistance of prostate cancer cell lines to chemotherapy. In addition, elevated endogenous JNK activity is required for improved proliferation and transformation of a number of epithelial tumours. However, prolonged JNK activation in response to cytotoxic stimuli can increase the sensitivity of cells to apoptosis. Prolonged JNK activity appears to induce the expression of a separate set of genes responsible for promoting apoptosis. Our group has recently shown that activation of JNK by chemotherapeutic drugs can sensitise DU 145 prostate carcinoma cells to Fas receptor mediated apoptosis. In order toidentify novel targets for treating hormone refractory prostate cancer we have investigated the role of JNK in Fas receptor mediated apoptosis. We have demonstrated that prolonged JNK activation is defective in DU 145 cells in response to Fas receptor activation alone. Co-administering anisomycin, a JNK agonist, greatly enhances the ability of DU 145 cells to undergo apoptosis by increasing the rate of Caspase 8 cleavage. We also investigated the role of endogenous JNK activity in Fas receptor mediated.
Resumo:
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
Resumo:
Valproic acid (VPA), a commonly-used anticonvulsant drug, is associated with increased risk of fetal malformations, including neural tube defects (NTDs). Previous in vivo studies determined that VPA-exposed embryos with a NTD had altered expression of several proteins regulated by p300, a histone acetyltransferase (HAT) protein. p300 is capable of acetylating histones and non-histone proteins through its HAT activity, allowing it to transcriptionally regulate genes as well as modulate the stability and activity of specific proteins. NFκB, Stat3 and Egr1, all of which function as transcription factors, are regulated by p300 through its HAT activity. Together, these proteins all play an important role in maintaining the balance of apoptosis, proliferation and differentiation, the regulation of which is extremely important for proper embryonic development. The studies in this thesis utilized P19 embryonal carcinoma (EC) cells in order to determine the effects of VPA exposure on the expression of p300 and the aforementioned transcription factors, as well as apoptosis and proliferation, in vitro. P19 EC cells were exposed to C646, a selective p300 inhibitor, in order to assess whether the effects observed as a result of VPA exposure were due to p300 protein degradation. It was found that VPA exposure for 24 hours in P19 EC cells in vitro resulted in a significant decrease in p300 protein expression. VPA exposure also significantly decreased NFκB protein expression, while resulting in increased Stat3 protein expression. However, Stat3 acetylation and phosphorylation, which both contribute to Stat3 activation, were significantly decreased as a result of VPA exposure. p300 inhibition resulted in a significant decrease in NFκB, similar to what was observed as a result of VPA exposure, which suggests that VPA-mediated degradation of p300 may play a role in reduced NFκB protein expression following VPA exposure. Conversely, Stat3 protein expression, acetylation and phosphorylation were not significantly changed as a result of p300 inhibition, suggesting that p300 degradation does not play a role in VPA’s effects on Stat3 protein expression and activation. VPA exposure also resulted in a significant increase in apoptosis, while p300 inhibition did not significantly increase apoptosis. These data suggest that p300 degradation plays a role in VPA-mediated teratogenicity, and that VPA may target other cellular mechanisms in order to exert its teratogenic effects.
Resumo:
Clostridium difficile is a leading cause of nosocomial infections, causing a spectrum of diseases ranging from diarrhoea to pseudomembranous colitis triggered by a range of virulence factors including C. difficile toxins A (TcdA) and B (TcdB). TcdA and TcdB are monoglucosyltransferases that irreversibly glycosylate small Rho GTPases, inhibiting their ability to interact with their effectors, guanine nucleotide exchange factors, and membrane partners, leading to disruption of downstream signalling pathways and cell death. In addition, TcdB targets the mitochondria, inducing the intrinsic apoptotic pathway resulting in TcdB-mediated apoptosis. Modulation of apoptosis is a common strategy used by infectious agents. Recently, we have shown that the enteropathogenic Escherichia coli (EPEC) type III secretion system effector NleH has a broad-range anti-apoptotic activity. In this study we examined the effects of NleH on cells challenged with TcdB. During infection with wild-type EPEC, NleH inhibited TcdB-induced apoptosis at both low and high toxin concentrations. Transfected nleH1 alone was sufficient to block TcdB-induced cell rounding, nuclear condensation, mitochondrial swelling and lysis, and activation of caspase-3. These results show that NleH acts via a global anti-apoptotic pathway.
Resumo:
The human pathogens enteropathogenic (EPEC) and enterohemorrhagic Escherichia coli and the related mouse pathogen Citrobacter rodentium subvert a variety of host cell signaling pathways via their plethora of type III secreted effectors, including triggering of an early apoptotic response. EPEC-infected cells do not develop late apoptotic symptoms, however. In this study we demonstrate that the NleH family effectors, homologs of the Shigella effector kinase OspG, blocks apoptosis. During EPEC infection, NleH effectors inhibit elevation of cytosolic Ca(2+) concentrations, nuclear condensation, caspase-3 activation, and membrane blebbing and promote cell survival. NleH1 alone is sufficient to prevent procaspase-3 cleavage induced by the proapoptotic compounds staurosporine, brefeldin A, and tunicamycin. Using C. rodentium, we found that NleH inhibits procaspase-3 cleavage at the bacterial attachment sites in vivo. A yeast two-hybrid screen identified the endoplasmic reticulum six-transmembrane protein Bax inhibitor-1 (BI-1) as an NleH-interacting partner. We mapped the NleH-binding site to the N-terminal 40 amino acids of BI-1. Knockdown of BI-1 resulted in the loss of NleH's antiapoptotic activity. These results indicate that NleH effectors are inhibitors of apoptosis that may act through BI-1 to carry out their cytoprotective function.
Resumo:
Apoptosis is a fundamental feature in the development of many organisms and tissue systems. It is also a mechanism of host defense against environmental stress factors or pathogens by contributing to the elimination of infected cells. Hemocytes play a key role in defense mechanisms in invertebrates and previous studies have shown that physical or chemical stress can increase apoptosis in hemocytes in mollusks. However this phenomenon has rarely been investigated in bivalves especially in the flat oyster Ostrea edulis. The apoptotic response of hemocytes from flat oysters, O. edulis, was investigated after exposure to UV and dexamethasone, two agents known to induce apoptosis in vertebrates. Flow cytometry and microscopy were combined to demonstrate that apoptosis occurs in flat oyster hemocytes. Investigated parameters like intracytoplasmic calcium activity, mitochondrial membrane potential and phosphatidyl-serine externalization were significantly modulated in cells exposed to UV whereas dexamethasone only induced an increase of DNA fragmentation. Morphological changes were also observed on UV-treated cells using fluorescence microscopy and transmission electron microscopy. Our results confirm the apoptotic effect of UV on hemocytes of O. edulis and suggest that apoptosis is an important mechanism developed by the flat oyster against stress factors.
Resumo:
Colorectal cancer (CRC) is the third most common cancer worldwide. Various factors such as age, lifestyle and dietary patterns affect the risk of having CRC. Epidemiological studies showed a chemopreventive effect of soy consumption against CRC. However, which component(s) of soybean is associated with this reduced risk is not yet fully delineated. The objective of this research was to evaluate the anti-colon cancer potential of lunasin isolated from defatted soybean flour using in vitro and in vivo models of CRC. Lunasin was isolated from defatted soybean flour by a combination of different chromatographic and ultrafiltration techniques. The anti-colon cancer potential of lunasin was determined using different human colon cancer cell lines in vitro and a CRC liver metastasis model in vivo. Lunasin caused cytotoxicity to different human colon cancer cells with an IC50 value of 13.0, 21.6, 26.3 and 61.7 µM for KM12L4, RKO, HCT-116 and HT-29 human colon cancer cells, respectively. This cytotoxicity correlated with the expression of the α5 integrin on human colon cancer cells with a correlation coefficient of 0.78. The mechanism involved in the cytotoxic effect of lunasin was through cell cycle arrest and induction of the mitochondrial pathway of apoptosis. In KM12L4 human colon cancer cells, lunasin caused a G2/M phase arrest increasing the percentage of cells at G2/M phase from 12% (PBS-treated) to 24% (treated with 10 µM lunasin). This arrest was attributed to the capability of lunasin to increase the expression of cyclin dependent kinase inhibitors p21 and p27. At 10 µM, lunasin increased the expression of p21 and p27 in KM12L4 colon cancer cells by 2.2- and 2.3-fold, respectively. Flow cytometric analysis showed that lunasin at 10 µM increased the percentage of cells undergoing apoptosis from 13.6% to 24.7%. This is further supported by fluorescence microscopic analysis of KM12L4 cells treated with 10 µM lunasin showing chromatin condensation and DNA fragmentation. The mechanism involved is through modification of proteins involved in the mitochondrial pathway of apoptosis in KM12L4 cells as 10 µM lunasin reduced the expression of the anti-apoptotic Bcl-2 protein by 2-fold and increased the expression of the pro-apoptotic proteins Bax, cytochrome c and nuclear clusterin by 2.2-, 2.1- and 2.3- fold, respectively. This led to increased expression and activity of the executioner of apoptosis, caspase-3 by 1.8- and 2.3-fold, respectively. This pro-apoptotic property of lunasin can be attributed to its capability to internalize into the cytoplasm and nucleus of colon cancer cells 24 h and 72 h after treatment, respectively. In addition, lunasin mediated metastasis of colon cancer cells in vitro by inhibiting the focal adhesion kinase activation thereby reducing expression of extracellular regulated kinase and nuclear factor kappa B and finally inhibiting migration of colon cancer cells. In KM12L4 colon cancer cells, 10 µM lunasin resulted in the reduction of phosphorylation of focal adhesion kinase and extracellular regulated kinase by 2.5-fold, resulting in the reduced nuclear translocation of p50 and p65 NF-κB subunits by 3.8- and 1.4-fold, respectively. In an in vivo model of CRC liver metastasis, daily intraperitoneal administration of lunasin at 4 mg/kg body weight resulted in the inhibition of KM12L4 liver metastasis as shown by the reduction of the number of liver metastases from 28 (PBS-treated) to 14 (lunasin-treated, P = 0.047) and reduction in tumor burden as measured by liver weight/body weight from 0.13 (PBS-treated) to 0.10 (lunasin-treated, P = 0.039). Moreover, lunasin potentiated the anti-metastatic effect of the chemotherapeutic drug oxaliplatin given at 5 mg/kg body weight twice per week. Lunasin and oxaliplatin combination resulted in a more potent inhibition of outgrowth of KM12L4 cell metastases to the liver reducing the number of liver metastases by 6-fold and reducing the tumor burden in the liver by 3-fold when compared to PBS-treated group. This can be attributed by the capability of lunasin and oxaliplatin to reduce expression of proliferating cell nuclear antigen in liver-tumor tissue as measured by immunohistochemical staining. The results of this research for the first time demonstrated the anti-colon cancer potential of lunasin isolated from defatted soybean flour which might contribute to the chemopreventive effect of soybean in CRC as seen in different epidemiological studies. In conclusion, lunasin isolated from defatted soybean flour mediated colon carcinogenesis by inducing apoptosis and preventing outgrowth of metastasis. We suggest that the results of this research serve as a basis for further study on the chemopreventive effect of lunasin against CRC and a possible adjuvant role for lunasin in therapy of patients with metastatic CRC.
Resumo:
Mushrooms are known as a powerful source of bioactive compounds including antioxidants, inhibitors of human tumour cell lines growth, inducers of apoptosis and enhancers of immunity. Indeed, many pre-clinical studies have been conducted in human tumour cell lines and in some cases a number of compounds isolated from mushrooms have followed to clinical trials. The Northeast of Portugal is one of the European regions with higher wild mushrooms diversity. However, to our knowledge, no studies had been conducted so far to verify their bioactivities. The main aim of this work was the evaluation of the bioactive properties (antioxidant properties and growth inhibitory potential on human tumour cell lines) of wild edible mushrooms collected in the Northeast of Portugal. Once properly identified, methanolic, ethanolic and boiling water extracts were prepared from thirty eight wild mushroom species collected in that region. Chemical characterization was obtained by high performance liquid chromatography (HPLC) coupled to a photodiode array detector (DAD) or to a refraction index detector (RI). Antioxidant activity assays were carried out in those extracts, including evaluation of 2,2-diphenyl-1-picrylhydrazyl (DPPH) radicals scavenging capacity, reducing power and inhibition of β-carotene bleaching. Extract-induced cell growth inhibition was assessed with the sulforhodamine B assay in four human tumour cell lines (NCI-H460 - lung cancer, MCF-7 -breast cancer, HCT-15 -colon cancer and AGS - gastric cancer). The effects on cell cycle profile and apoptosis were evaluated by flow cytometry and the effect on the expression levels of proteins related to cell cycle and apoptosis was further investigated by Western blotting. Three wild edible mushroom species revealed growth inhibitory activity in the studied human tumour cell lines: Clitocybe alexandri ethanolic extract, Lepista inversa methanolic extract and Suillus collinitus methanolic extract. C. alexandri ethanolic extract induced an S-phase cell cycle arrest and increased the percentage of apoptotic cells, in the NCI-H460 cell line. The analysed mushroom species also provided interesting antioxidant potential, mainly the boiling water extract of L. inversa which showed the highest DPPH radical scavenging activity, reducing power and β-carotene bleaching inhibition. S. collinitus methanolic extract induced a slight increase in the number of cells in G1, with a concomitant decrease in the percentage of cells in the S phase of the cell cycle and an increase in the percentage of apoptotic cells, in the MCF-7 cell line. The combined use of the S. collinitus methanolic extract and etoposide caused a greater decrease in the percentage of cell growth, when compared to either of them used individually, indicating the potential benefit of this combination. The tested extracts were chemically characterized and protocatechuic, p-hydroxybenzoic, p-coumaric and cinnamic acids were the main compounds identified on the phenolic (methanolic and ethanolic) extracts, while mannitol, trehalose and arabinose were the main sugars found in the polysaccharidic (boiling water) extracts after hydrolysis. The individual compounds identified in the extracts were submitted to a screening of tumour cells growth inhibitory activity, but only the phenolic acids and a related compound, cinnamic acid, presented activity. This compound was found to be the most potent one regarding cell growth inhibition in the NCI-H460 cell line. The effect of the individual and combined treatment with the identified compounds was also evaluated. Cinnamic and protochatequic acids caused a statistically significantly reduction in the number of viable cells. In addition, p-hydroxybenzoic acid did not show any significantly reduction in the viable cell number. Nevertheless, it was verified that the concomitant use of the three compounds provided the strongest decrease in the viable cell number, suggesting a possible concomitant effect of those compounds. Overall, the present work has contributed to further understand the bioactive potential of wild edible mushrooms from the Northeast of Portugal. This study allowed to identify some species with antioxidant or tumour cell growth inhibitory potential.
Resumo:
The current work aimed to study the antitumour activity of a phenolic extract of the edible mushroom Leccinum vulpinum Watling, rich essentially in hydroxybenzoic acids. In a first approach, the mushroom extract was tested against cancer cell growth by using four human tumour cell lines. Given the positive results obtained in these initial screening experiments and the evidence of some studies for an inverse relationship between mushroom consumption and breast cancer risk, a detailed study of the bioactivity of the extract was carried out on MCF-7 cells. Once the selected cell line to precede the work was the breast adenocarcinoma cell line, the human breast non-malignant cell line MCF-10A was used as control. Overall, the extract decreased cellular proliferation and induced apoptosis. Furthermore, the results also suggest that the extract causes cellular DNA damage. Data obtained highlight the potential of mushrooms as a source of biologically active compounds, particularly with antitumour activity.
Resumo:
Objective: We evaluated the protective activity of an extract from a by-product such as olive stones, through its ability to inhibit H2O2 induced apoptosis in the SH-SY5Y human neuroblastoma cell line. Material and methods: To such end, 20,000 cells/well were cultivated and differentiation with retinoic acid was initiated. Once the cells were differentiated, apoptosis was induced with and without H2O2 extract. Finally, cDNA extraction was performed, and pro-apoptotic genes Bax and anti-apoptotic genes Bcl-2 were analyzed. Quantification of the gene expression was performed using the GAPDH gene marker. Results: Cell viability with the extract is 97.6% (SD 5.7) with 10 mg/l and 62.8% (SD 1.2) to 50 mg/l, using 10 mg/l for the biomarker assay. The retinoic acid differentiated SH-S cell line (10 µM) shows a clear apoptosis when treated with H2O2 150 µM, with a Bax/Bcl-2 ratio of 3.75 (SD 0.80) in contrast to the differentiated control cells subjected to H2O2 and with extract, which have the same ratio of 1.02 (SD 0.01-0.03). Conclusion: The olive stone extract shows anti-apoptotic activity in the provoked cell death of SH-SY5Y human neuroblastoma cells in their normal state, defending them from oxidative stress which produces a significant increase in the apoptotic gene ratio in contrast to anti-apoptotic genes (Bax/Bcl-2).
Resumo:
Dissertação de Mestrado, Engenharia Biológica, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
Purpose: To explore the effect of recombinant human erythropoietin (r-HuEPO) on apoptosis in rats after traumatic brain injury. Methods: A total of 48 traumatic brain-injured Sprague Dawley (SD) rats were obtained by improved Feeney’s traumatic brain injury model, and were randomly divided into four groups: normal salinetreated rats (control) and rats treated with r-HuEPO at doses of 1000 U/kg, 3000 U/kg and 5000 U/kg. Brain tissues were collected on the 7th day after trauma surgery. Apoptotic cells, and NF-kappa B (NFĸB)-, c-myc-, and Fas/Fasl-positive cells were identified in brain tissues by immunohistochemical assay. Results: After treatment with r-HuEPO (3000 and 5000 U/kg), expression of NF-κB and Fas/Fasl were significantly decreased (p < 0.05) compared to control rats, especially at the 5000 U/kg dose (p < 0.01). However, for c-myc, no significant difference was observed between r-HuEPO treatment and control groups (p > 0.05). Compared to the 1000 U/kg r-HuEPO group, Fas/Fasl expression levels were significantly lower in the 3000 and 5000 U/kg r-HuEPO groups (p < 0.05). Additionally, expression of NF-κB and Fasl in the 5000 U/kg r-HuEPO group was significantly lower than that in the 3000 U/kg r- HuEPO group (p < 0.05). Moreover, the number of apoptotic cells in the r-HuEPO group (5000 U/kg) was significantly lower than in the control group (p < 0.05). Conclusion: Thus, r-HuEPO may be beneficial for treating traumatic brain injury via inhibition of NFkappa B and Fas/Fasl expressions.