999 resultados para TEMPERATURE INVERSIONS
Resumo:
Free-standing Pt-aluminide (PtAl) bond coat, when subjected to tensile testing at high temperatures (T >= 900 degrees C), exhibits significant decrease in strength and increase in ductility during deformation at strains exceeding that corresponding to the ultimate tensile strength (UTS), i.e., in the post-UTS regime. The stress-strain curve is also marked by serrations in this regime. Electron back scattered diffraction (EBSD) and transmission electron microscopy (TEM) studies suggest dynamic recovery and recrystallization (DRR) as the mechanisms for the observed tensile behavior in the coating. Activation energy values suggest vacancy diffusion assists DRR. The fine recrystallized grains formed after deformation had a strong < 110 > texture. (c) 2014 Elsevier B.V. All rights reserved.
Resumo:
Climate change impact assessment studies involve downscaling large-scale atmospheric predictor variables (LSAPVs) simulated by general circulation models (GCMs) to site-scale meteorological variables. This article presents a least-square support vector machine (LS-SVM)-based methodology for multi-site downscaling of maximum and minimum daily temperature series. The methodology involves (1) delineation of sites in the study area into clusters based on correlation structure of predictands, (2) downscaling LSAPVs to monthly time series of predictands at a representative site identified in each of the clusters, (3) translation of the downscaled information in each cluster from the representative site to that at other sites using LS-SVM inter-site regression relationships, and (4) disaggregation of the information at each site from monthly to daily time scale using k-nearest neighbour disaggregation methodology. Effectiveness of the methodology is demonstrated by application to data pertaining to four sites in the catchment of Beas river basin, India. Simulations of Canadian coupled global climate model (CGCM3.1/T63) for four IPCC SRES scenarios namely A1B, A2, B1 and COMMIT were downscaled to future projections of the predictands in the study area. Comparison of results with those based on recently proposed multivariate multiple linear regression (MMLR) based downscaling method and multi-site multivariate statistical downscaling (MMSD) method indicate that the proposed method is promising and it can be considered as a feasible choice in statistical downscaling studies. The performance of the method in downscaling daily minimum temperature was found to be better when compared with that in downscaling daily maximum temperature. Results indicate an increase in annual average maximum and minimum temperatures at all the sites for A1B, A2 and B1 scenarios. The projected increment is high for A2 scenario, and it is followed by that for A1B, B1 and COMMIT scenarios. Projections, in general, indicated an increase in mean monthly maximum and minimum temperatures during January to February and October to December.
Resumo:
A typical Ce0.85Gd0.15O2-delta (CDC15) composition of CeO2-Gd2O3 system is synthesized by modified sol - gel technique known as citrate-complexation. TG-DTA, XRD, FT-IR, Raman, FE-SEM/EDX and ac impedance analysis are carried out for structural and electrical characterization. XRD pattern confirmed the well crystalline cubic fluorite structure of CDC15 after calcining at 873 K. Raman spectral bands at 463, 550 and 600 cm(-1) are also in agreement with these structural features. FE-SEM image shows well-defined grains separated from grain boundary and good densification. Ac impedance studies reveal that GDC15 has oxide ionic conductivity similar to that reported for Ce0.9Gd0.1O2-delta (GDC10) and Ce0.8Gd0.2O2-delta (GDC20). Ionic and electronic transference numbers at 673 K are found to be 0.95 and 0.05, respectively. This indicates the possible application of GDC15 as a potential electrolyte for IT-SOFCs. (C) 2014 Elsevier B.V. All rights reserved.
Resumo:
Spin injection, manipulation and detection are the integral parts of spintronics devices and have attracted tremendous attention in the last decade. It is necessary to judiciously choose the right combination of materials to have compatibility with the existing semiconductor technology. Conventional metallic magnets were the first choice for injecting spins into semiconductors in the past. So far there is no success in using a magnetic oxide material for spin injection, which is very important for the development of oxide based spintronics devices. Here we demonstrate the electrical spin injection from an oxide magnetic material Fe3O4, into GaAs with the help of tunnel barrier MgO at room temperature using 3-terminal Hanle measurement technique. A spin relaxation time tau similar to 0.9 ns for n-GaAs at 300 K is observed along with expected temperature dependence of t. Spin injection using Fe3O4/MgO system is further established by injecting spins into p-GaAs and a tau of similar to 0.32 ns is obtained at 300 K. Enhancement of spin injection efficiency is seen with barrier thickness. In the field of spin injection and detection, our work using an oxide magnetic material establishes a good platform for the development of room temperature oxide based spintronics devices.
Resumo:
The effect of Zr, Hf, and Sn in BaTiO3 has been investigated at close composition intervals in the dilute concentration limit. Detailed structural analysis by x-ray and neutron powder diffraction revealed that merely 2mol. % of Zr, Sn, and Hf stabilizes a coexistence of orthorhombic (Amm2) and tetragonal (P4mm) phases at room temperature. As a consequence, all the three systems show substantial enhancement in the longitudinal piezoelectric coefficient (d(33)), with Sn modification exhibiting the highest value similar to 425 pC/N. (C) 2014 AIP Publishing LLC.
Resumo:
Temperature sensitive (Ts) mutants of proteins provide experimentalists with a powerful and reversible way of conditionally expressing genes. The technique has been widely used in determining the role of gene and gene products in several cellular processes. Traditionally, Ts mutants are generated by random mutagenesis and then selected though laborious large-scale screening. Our web server, TSpred (http://mspc.bii.a-star.edu.sg/TSpred/), now enables users to rationally design Ts mutants for their proteins of interest. TSpred uses hydrophobicity and hydrophobic moment, deduced from primary sequence and residue depth, inferred from 3D structures to predict/identify buried hydrophobic residues. Mutating these residues leads to the creation of Ts mutants. Our method has been experimentally validated in 36 positions in six different proteins. It is an attractive proposition for Ts mutant engineering as it proposes a small number of mutations and with high precision. The accompanying web server is simple and intuitive to use and can handle proteins and protein complexes of different sizes.
Resumo:
In the present paper, thermo-mechanical response of B2-NiAl nanowire along the < 100 >, < 110 >, and < 111 > orientations has been studied using molecular dynamics simulations. Nanowire with cross-sectional dimensions of similar to 20x20 angstrom(2), similar to 25x25 angstrom(2), and similar to 30x30 angstrom(2) and temperature range of 10 K-900 K has been considered. A Combined effect of size, orientation, and temperature on the stress-strain behavior under uniaxial tensile loading has been presented. It has been observed that < 111 > oriented NiAl nanowire that is energetically most stable gives highest yield stress which further reduces with < 110 > and < 100 > orientations. A remarkable ductile brittle transition (DBT) with an increase in temperature has also been reported for all the orientations considered in the present study. The DBT observed for the nanowire has also been compared with the reported DBT of bulk B2-NiAl obtained from experiments. Alternate technique has also been proposed to increase the toughness of a given material especially at lower temperature regions, i.e. below DBT.
Resumo:
We report inelastic light scattering studies on Ca(Fe0.97Co0.03)(2)As-2 in a wide spectral range of 120-5200 cm(-1) from 5 to 300 K, covering the tetragonal to orthorhombic structural transition as well as magnetic transition at T-sm similar to 160 K. The mode frequencies of two first-order Raman modes B-1g and E-g, both involving the displacement of Fe atoms, show a sharp increase below T-sm. Concomitantly, the linewidths of all the first-order Raman modes show anomalous broadening below T-sm, attributed to strong spin-phonon coupling. The high frequency modes observed between 400 and 1200 cm(-1) are attributed to electronic Raman scattering involving the crystal field levels of d-orbitals of Fe2+. The splitting between xz and yz d-orbital levels is shown to be similar to 25 meV, which increases as temperature decreases below T-sm. A broad Raman band observed at similar to 3200 cm(-1) is assigned to two-magnon excitation of the itinerant Fe 3d antiferromagnet.
Resumo:
We present comparative analysis of microscopic mechanisms relevant to plastic deformation of the face-centered cubic (FCC) metals Al, Cu, and Ni, through determination of the temperature-dependent free energies of intrinsic and unstable stacking faults along 1 (1) over bar 0] and 1 (2) over bar 1] on the (1 1 1) plane using first-principles density-functional-theory-based calculations. We show that vibrational contribution results in significant decrease in the free energy of barriers and intrinsic stacking faults (ISFs) of Al, Cu, and Ni with temperature, confirming an important role of thermal fluctuations in the stability of stacking faults (SFs) and deformation at elevated temperatures. In contrast to Al and Ni, the vibrational spectrum of the unstable stacking fault (USF1 (2) over bar 1]) in Cu reveals structural instabilities, indicating that the energy barrier (gamma(usf)) along the (1 1 1)1 (2) over bar 1] slip system in Cu, determined by typical first-principles calculations, is an overestimate, and its commonly used interpretation as the energy release rate needed for dislocation nucleation, as proposed by Rice (1992 J. Mech. Phys. Solids 40 239), should be taken with caution.
Resumo:
The temperature of allotropic phase transformation in ZnS (cubic to wurtzite) changes with pressure and particle size. In this paper we have explored the interrelation among these through a detailed study of ZnS powders obtained by a temperature-controlled high energy milling process. By employing the combined effect of temperature and pressure in an indigenously built cryomill, we have demonstrated a large-scale, low-temperature synthesis of wurtzite ZnS nanoparticles. The synthesized products have been characterized for their phase and microstructure by the use of X-ray diffraction and transmission electron microscopic techniques. Further, it has been demonstrated that the synthesized materials exhibit photoluminescence emissions in the UV-visible region with an unusual doublet pattern due to the presence of both cubic and hexagonal wurtzite domains in the same particles. By further fine-tuning the processing conditions, it may be possible to achieve controlled defect related photoluminescence emissions from the ZnS nanoparticles.
Resumo:
Lead-tin-telluride is a well-known thermoelectric material in the temperature range 350-750 K. Here, this alloy doped with manganese (Pb0.96-yMn0.04SnyTe) was prepared for different amounts of tin. X-ray diffraction showed a decrease of the lattice constant with increasing tin content, which indicated solid solution formation. Microstructural analysis showed a wide distribution of grain sizes from <1 mu m to 10 mm and the presence of a SnTe rich phase. All the transport properties were measured in the range of 300-720 K. The Seebeck coefficient showed that all the samples were p-type indicating holes as dominant carriers in the measurement range. The magnitude increased systematically on reduction of the Sn content due to possible decreasing hole concentration. Electrical conductivity showed the degenerate nature of the samples. Large values of the electrical conductivity could have possibly resulted from a large hole concentration due to a high Sn content and secondly, due to increased mobility by sp-d orbital interaction between the Pb1-ySnyTe sublattice and the Mn2+ ions. High thermal conductivity was observed due to higher electronic contribution, which decreased systematically with decreasing Sn content. The highest zT = 0.82 at 720 K was obtained for the alloy with the lowest Sn content (y = 0.56) due to the optimum doping level.
Resumo:
Quaternary compound with chemical composition Cu2.1ZnSnSe4 is prepared by solid state synthesis. High temperature XRD (X-Ray Diffraction) of this compound is used in studying the effect of temperature on lattice parameters and thermal expansion coefficients. Thermal expansion coefficient is one of the important quantities in evaluating the Gruneisen parameter which further useful in determining the lattice thermal conductivity of the material. The high temperature XRD of the material revealed that the lattice parameters as well as thermal expansion coefficients of the material increased with increase in temperature which confirms the presence of anharmonicty.
Resumo:
The performance of a building integrated photovoltaic system (BIPV) has to be commendable, not only on the electrical front but also on the thermal comfort front, thereby fulfilling the true responsibility of an energy providing shelter. Given the low thermal mass of BIPV systems, unintended and undesired outcomes of harnessing solar energy - such as heat gain into the building, especially in tropical regions - have to be adequately addressed. Cell (module) temperature is one critical factor that affects both the electrical and the thermal performance of such installations. The current paper discusses the impact of cell (module) temperature on both the electrical efficiency and thermal comfort by investigating the holistic performance of one such system (5.25 kW(p)) installed at the Centre for Sustainable Technologies in the Indian Institute of Science, Bangalore. Some recommendations (passive techniques) for improving the performance and making BIPV structures thermally comfortable have been listed out. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
The present study experimentally evaluates the performance of control (standard cylinder specimen), damaged (mechanical loading after thermal exposure) and repaired / retrofitted normal plain concrete cylinders using different repair schemes such as on use of FRP wraps, Geo-polymers, etc., to restore the capacity of damaged structural concrete elements. The control-companion specimen in the series provides the reference frame against which both, specimen damage levels were quantified and the benefits of a specimen repaired subsequent to damage were assessed.
Resumo:
Crystals of Boc-gamma y(4)(R)Val-Val-OH undergo a reversible first-order single crystal to single crystal phase transition at T-c approximate to 205 K from the orthorhombic space group P22(1)2(1) (Z' = 1) to the monoclinic space group P2(1) (Z' = 2) with a hysteresis of similar to 2.1 K. The low-temperature monoclinic form is best described as a nonmerohedral twin with similar to 50% contributions from its two components. The thermal behavior of the dipeptide crystals was characterized by differential scanning calorimetry experiments. Visual changes in birefringence of the sample during heating and cooling cycles on a hot-stage microscope with polarized light supported the phase transition. Variable-temperature unit cell check measurements from 300 to 100 K showed discontinuity in the volume and cell parameters near the transition temperature, supporting the first-order behavior. A detailed comparison of the room-temperature orthorhombic form with the low-temperature (100 K) monoclinic form revealed that the strong hydrogen-bonding motif is retained in both crystal systems, whereas the non-covalent interactions involving side chains of the dipeptide differ significantly, leading to a small change in molecular conformation in the monoclinic form as well as a small reorientation of the molecules along the ac plane. A rigid-body thermal motion analysis (translation, libration, screw; correlation of translation and libration) was performed to study the crystal entropy. The reversible nature of the phase transition is probably the result of an interplay between enthalpy and entropy: the low-temperature monoclinic form is enthalpically favored, whereas the room-temperature orthorhombic form is entropically favored.