961 resultados para TC-1 tumor
Resumo:
Regulation of colonic epithelial cell proliferation and differentiation remains poorly understood due to the inability to design a model system which recapitulates these processes. Currently, properties of "differentiation" are studied in colon adenocarcinoma cell lines which can be induced to express some, but not all of the phenotypes of normal cells. In this thesis, the DiFi human colon adenocarcinoma cell line is utilized as an in vitro model system in which to study mucin production. In response to treatment with tumor necrosis factor-alpha, DiFi cells acquire some properties of mucin-producing goblet cells including altered morphology, increased reactivity to wheat germ agglutinin, and increased mucin production as determined by RNA expression as well as reactivity with the MUC-1 antibodies, HMFG-1 and SM-3. Thus, TNF-treated DiFi cells represent one of the few in vitro systems in which mucin expression can be induced.^ DiFi cells express an activated pp60$\sp{{\rm c}-src},$ as do most colon adenocarcinomas and derived cell lines, as well as an amplified epidermal growth factor (EGF) receptor. To assess potential changes in these enzymes during induction of differentiation characteristics, potential changes in the levels and activities of these enzymes were examined. For pp60$\sp{{\rm c}-src},$ no changes were observed in protein levels, specific activity of the kinase, cellular localization, or phosphorylation pattern as determined by Staphylococcus aureus V8 protease partial proteolytic mapping after induction of goblet cell-like phenotypic changes. These results suggest that pp60$\sp{{\rm c}-src}$ is regulated differentially in goblet cells than in absorptive cells, as down-modulation of pp60$\sp{{\rm c}-src}$ kinase occurs in the latter. Therefore, effects on pp60$\sp{{\rm c}-src}$ may be critical in colon regulation, and may be important in generating the various colonic epithelial cell types.^ In contrast to pp60$\sp{{\rm c}-src},$ EGF receptor tyrosine kinase activity decreased ($<$5-fold) after TNF treatment and at the time in which morphologic changes were observed. Similar decreases in tyrosine phosphorylation of EGF receptor were observed as assessed by immunoblotting with an anti-phosphotyrosine antibody. In addition, ($\sp{125}$I) -EGF cell surface binding was reduced approximately 3-fold following TNF treatment with a concomitant reduction in receptor affinity ($<$2-fold). These results suggest that modulation of EGF receptor may be important in goblet cell differentiation. In contrast, other published studies have demonstrated that increases in EGF receptor mRNA and in ($\sp{125}$I) -EGF binding accompany differentiation toward the absorptive cell phenotype. Therefore, differential regulation of both EGF receptor and pp60$\sp{{\rm c}-src}$ occur along the goblet cell and absorptive cell differentiation pathways. Thus, my results suggest that TNF-treated DiFi cells represent a unique system in which to study distinct patterns of regulation of pp60$\sp{{\rm c}-src}$ and EGF receptor in colonic cells, and to determine if increased MUC-1 expression is an early event in goblet cell differentiation. ^
Resumo:
Nonpapillary renal cell carcinoma (RCC) is an adult cancer of the kidney which occurs both in familial and sporadic forms. The familial form of RCC is associated with translocations involving chromosome 3 with a breakpoint at 3p14-p13. Studies focused on sporadic RCC have shown two commonly deleted regions at 3p14.3-p13 and 3p21.3. In addition, a more distal region mapping to 3p26-p25 has been linked to the Von Hippel Lindau (VHL) disease gene. A large proportion of VHL patients develop RCC. The short arm of human chromosome 3 can, therefore, be dissected into three distinct regions which could encode tumor suppressor genes for RCC. Loss or inactivation of one or more of these loci may be an important step in the genesis of RCC.^ I have used the technique of microcell-mediated chromosome transfer to introduce an intact, normal human chromosome 3 and defined fragments of 3p, dominantly marked with pSV2neo, into the highly malignant RCC cell line SN12C.19. The introduction of chromosome 3 and of a centric fragment of 3p, encompassing 3p14-q11, into SN12C.19 resulted in dramatic suppression of tumor growth in nude mice. Another defined deletion hybrid contained the region 3p12-q24 of the introduced human chromosome and failed to suppress tumorigenicity. These data define the region 3p14-p12, the most proximal region of high frequency allele loss in sporadic RCC as well as the region containing the translocation breakpoint in familial RCC, to contain a novel tumor suppressor locus involved in RCC. We have designated this locus nonpapillary renal cell carcinoma-1 (NRC-1). Furthermore, we have functional evidence that NRC-1 controls the growth of RCC cells by inducing rapid cell death in vivo. ^
Resumo:
Monocyte developmental heterogeneity is reflected at the cellular level by differential activation competence, at the molecular level by differential regulation of gene expression. LPS activates monocytes to produce tumor necrosis factor-$\alpha$ (TNF). Events occurring at the molecular level necessary for TNF regulation have not been elucidated, but depend both on activation signals and the maturation state of the cell: Peripheral blood monocytes produce TNF upon LPS stimulation, but only within the first 72 hours of culture. Expression of c-fos is associated with monocytic differentiation and activation; the fos-associated protein, c-jun, is also expressed during monocyte activation. Increased cAMP levels are associated with down regulation of macrophage function, including LPS-induced TNF transcription. Due to these associations, we studied a region of the TNF promoter which resembles the binding sites for both AP-1(fos/jun) and CRE-binding protein (or ATF) in order to identify potential molecular markers defining activation competent populations of monocytic cells.^ Nuclear protein binding studies using extracts from THP-1 monocytic cells stimulated with LPS, which stimulates, or dexamethasone (Dex) or pentoxyfilline (PTX), which inhibit TNF production, respectively, suggest that a low mobility doublet complex may be involved in regulation through this promoter region. PTX or Dex increase binding of these complexes equivalently over untreated cells; approximately two hours after LPS induction, the upper complex is undetectable. The upper complex is composed of ATF2 (CRE-BP1); the lower is a heterodimer of jun/ATF2. LPS induces c-jun and thus may enhance formation of jun-ATF2 complexes. The simultaneous presence of both complexes may reduce the amount of TNF transcription through competitive binding, while a loss of the upper (ATF2) and/or gain of the lower (jun-ATF2) allow increased transcription. AP-1 elements generally transduce signals involving PKC; the CRE mediates a cAMP response, involving PKA. Thus, this element has the potential of receiving signals through divergent signalling pathways. Our findings also suggest that cAMP-induced inhibition of macrophage functions may occur via down regulation of activation-associated genes through competitive binding of particular cAMP-responsive nuclear protein complexes. ^
Resumo:
Alterations in oncogenes and tumor suppressor genes (TSGs) are considered to be critical steps in oncogenesis. Consistent deletions and loss of heterozygosity (LOH) of polymorphic markers in a determinate chromosomal fragment are known to be indicative of a closely mapping TSG. Deletion of the long arm of chromosome 7 (hchr 7) is a frequent trait in many kinds of human primary tumors. LOH was studied with an extensive set of markers on chromosome 7q in several types of human neoplasias (primary breast, prostate, colon, ovarian and head and neck carcinomas) to determine the location of a putative TSG. The extent of LOH varied depending the type of tumor studied but all the LOH curves we obtained had a peak at (C-A)$\sb{\rm n}$ microsatellite repeat D7S522 at 7q31.1 and showed a Gaussian distribution. The high incidence of LOH in all tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on the 7q31.1. To investigate whether the putative TSG is conserved in the syntenic mouse locus, we studied LOH of 30 markers along mouse chromosome 6 (mchr 6) in chemically induced squamous cell carcinomas (SCCs). Tumors were obtained from SENCAR and C57BL/6 x DBA/2 F1 females by a two-stage carcinogenesis protocol. The high incidence of LOH in the tumor types studied suggests that a TSG relevant to the development of epithelial cancers is present on mchr 6 A1. Since this segment is syntenic with the hchr 7q31, these data indicate that the putative TSG is conserved in both species. Functional evidence for the existence of a TSG in hchr 7 was obtained by microcell fusion transfer of a single hchr 7 into a murine SCC-derived cell line. Five out of seven hybrids had two to three-fold longer latency periods for in vivo tumorigenicity assays than parental cells. One of the unrepressed hybrids had a deletion in the introduced chromosome 7 involving q31.1-q31.3, confirming the LOH data. ^
Resumo:
Human pro-TNF-$\alpha$ is a 26 kd type II transmembrane protein, and it is the precursor of 17 kd mature TNF. Pro-TNF release mature from its extracellular domain by proteolytic cleavage between resideu Ava ($-$1) and Val (+1). Both forms of TNF are biologically active and the native form of mature TNF is a bell-shaped trimer. The structure of pro-TNF was studied both in intact cell system and in an in vitro translation system by chemical crosslinking. We found that human pro-TNF protein exist as a trimer in intact cells (LPS-induced THP-1 cells and TNF cDNA transfected COS-3 cells) and this trimeric structure is assembled intracellularly, possibly in the ER. By analysis several deletion mutants, we observed a correlation between expression of pro-TNF cytotoxicity in a juxtacrine fashion and detection of the trimer, suggesting the trimeric structure is very important for its biologic activity. With a series of deletion mutants in the linking domain, we found that the small deletion did not block the cleavage and large deletion did regardless of the presence or absence of the native cleavage site, suggesting that the length of the residues between the plasma membrane and the base of the trimer determines the rate of the cleavage, possibly by blocking the accessibility of the cleavage enzyme to its action site. Our data also suggest that the native cleavage site is not sufficient for the release of mature TNF and alternative cleavage site(s) exists. ^
Resumo:
An in vitro model using highly purified freshly isolated T cells demonstrated that immobilized ligands for the integrin $\alpha4\beta1$ could cooperate to enhance mitogen signals delivered by coimmobilized anti-CD3 specfic monoclonal antibody OKT3. Costimulation through $\alpha4\beta1$ integrin lead to enhanced proliferation which depended on expression of both IL-2 as well as IL-2 receptor. The transcription factors NF-AT, AP-1, and NF-$\kappa$B, which are involved in the regulation of IL-2 as well as other cytokine genes, were weakly induced by anti-CD3 stimulation alone in electromobility shift assays, but were augmented significantly with $\alpha4\beta1$ costimulation. These results suggested that $\alpha4\beta1$ ligands delivered a growth promoting signal which could synergize with signals induced by engagement of the TCR/CD3 complex, and also suggested a dual function for integrins in both localization and subsequent delivery of a growth promoting signal for T lymphocytes. Integrin involvement in lymphocyte trafficking has been employed as a model for understanding tumor cell metastasis. Therefore we have extended the duality of integrin function in both homing and subsequent delivery of a growth promoting signal to include a role for integrins in providing growth stimulation for tumor cells. Using a gastric derived tumor line, inhibition of adhesion to substrate leads to G0/G1 cell cycle arrest, reduced cyclin A expression, and reduced phospholipid synthesis. This effect could be reversed upon $\alpha2\beta1$ integrin mediated reattachment to collagen. These observations demonstrated a role for an integrin in the growth regulation of a tumor line. The small GTP-binding protein Rho, implicated in phospholipid synthesis, can be inactivated by the ADP-ribosylation exoenzyme C3 from C. botulinum. Addition of C3 to cell cultures inhibited the growth promoting effect due to integrin mediated adhesion. Taken together, these results are consistent with a model for cooperative interaction between integrins and Rho leading to enhanced phospholipid synthesis and mitogen signaling. This model may provide a basis for understanding the phenomena of integrin costimulation in T cell activation. ^
Resumo:
Metastasis is the complex process of tumor cell spread which is responsible for the majority of cancer-related deaths. Metastasis necessitates complex phenotypic changes, many of which are mediated by changes in the activities of cell surface molecules. One of these is cell surface $\beta$1,4-galactosyltransferase (GalTase), which is elevated on more highly metastatic cells. In this study, both molecular and biochemical methods were used to perturb and manipulate cell surface GalTase levels on K1735 murine melanoma cell lines in order to examine its function in metastasis.^ As expected, highly metastatic K1735 variants have higher cell surface GalTase than poorly metastatic variants. Stably transfected K1735 cell lines that overexpress surface GalTase were created. These cell lines were assayed for metastatic ability using an invasion chamber with Matrigel-coated filter inserts. Cells with increased surface GalTase were uniformly more invasive than neo transfected controls. With multiple cell lines, there was a direct correlation (r = 0.918) between surface GalTase activity and invasiveness. Homologous recombination was used to create K1735 cells with decreased levels of surface GalTase. These cells were uniformly less invasive than controls. Cell surface GalTase was inhibited using two different biochemical strategies. In both cases, inhibition of surface GalTase led to a decrease in in vivo metastatic ability of K1735 cells. This is the first direct experimental evidence addressing GalTase function in metastasis. These data provide several lines of independent evidence which show that cell surface GalTase facilitates invasion and metastasis. ^
Resumo:
The relationship between MMAC/PTEN, DMBT1 and the progression and prognosis of glioma, and the association between the alterations of MMAC/PTEN, p53, p16, and Rb and some cancer risk factors, such as smoking, exposure to radiation, family cancer history, and previous cancer history, were assessed in 4 studies. ^ By allelic deletion analysis, MMAC/PTEN locus was shown to be frequently lost in glioblastomas multiforme (GM) but maintained in most lower-grade astrocytic tumors. DMBT1 locus, however, was frequently lost in all grades of gliomas examined. The potential biological significance of these two regions was frontier assessed by examining microcell-hybrids that contained various fragments of 10q. Somatic cell hybrid clones that retained the MMAC/PTEN locus have less transformed phenotypes, exhibiting an inability to grow in soft agarose. On the other hand, the presence or absence of DAMT1 did not correlate with any in vitro phenotype assessed in our model system. Further, Cox proportional hazards regression analysis, adjusted for age at surgery and histologic grades (GM, and non-GM), showed that without LOH at the MMAC/PTEN locus had a significantly better prognosis than did patients with LOH at MMAC/ PTEN (hazard ratio = 0.5; 95% Cl = 0.28–0.89; P = 0.018). Furthermore, status of LOH at MMAC/PTEN was found to be significantly associated with age, while that for DMBT1 was not. These results suggest that the DMBT1 may be involved early in the oncogenesis of gliomas, while alterations in the MMAC /PTEN may be a late event in the oncogenesis related with progression of gliomas and provide a significant prognostic marker for patient survival. ^ The associations between 4 cancer risk factors and 4 tumor suppressor genes were assessed. The expression of p16 was observed to be associated with current smoking (adjusted OR = 1.9, 95% CI = 1.02–3.6) but not the former smoking (adjusted OR = 1.1, 95% Cl = 0.5–3.5). The expression of p53 was found to be associated with the family cancer history (OR = 3.5, 95% Cl = 1.07–11 for patients with first-degree family history of cancer). MMAC/ PTEN was associated with the histologic grade (OR = 2.8, 95% CI = 1.2–6.6) and age (P = 0.035). Also, the OR for LOH around MMAC/PTEN in patients with a family history of cancer was elevated (OR = 1.9, 95% CI = 0.8–4.6 for patients with first-degree family history of cancer). The associations between exposure and the alterations of tumor suppressor genes, between smoking and p16, between family history of cancer and p53 and MMAC/PTEN, provide suggestive evidences that those exposures are related to the development of gliomas. ^
Resumo:
Human colon cancer cells, LS180 and 174T, exhibit monoclonal antibody (mAb) 1083-17-1A and 5E113 defined tumor associated antigens. By radioimmunoassay, LS180 cells expressed the highest amount of mAb1083 defined antigens among the cell lines tested. Another mAb, 5E113, competed with mAb1083 for binding to LS180 cells, suggesting that both mAbs might bind onto identical (or adjacent) epitopes. By Scatchard analysis, about one million copies of the epitopes were present on LS180 colon cancer cells. The affinity of mAb1083 binding to the cells was 2.97 x 10('10) M('-1); the Sipsian heteroclonality value of mAb1083 was 0.9, thus approximating a single clone of reactive antibody. The qualitative studies showed that the epitopes were probably not carbohydrate because of their sensitivity to proteinases and not to mixed glucosidases and neuraminidase. The tunicamycin homologue B(,2) inhibited the incoporation of ('3)H-labeled galactose but not uptake of ('35)S-labeled methionine, nor expression of monoclonal antibody defined antigens providing further evidence to exclude the possibility of carbohydrate epitopes. There was evidence that the epitope might be partially masked in its "native" conformation, since short exposure or low dose treatment with proteases increased mAbs binding. The best detergent for antigen extraction, as detected by dot blotting and competitive inhibition assays, was octylglucoside at 30 mM concentration. Three methods, immunoprecipitation, Western blotting and photoaffinity labeling, were used to determine the molecular nature of the antigens. These results demonstrated that the antibody bound both 43 K daltons (KD) and 22 KD proteins.^ An in vitro cell-mediated immune approach was also used to attempt identifying function for the antigens. The strategy was to use mAbs to block cytotoxic effector cell killing. However, instead of blocking, the mAb1083 and 5E113 showed strong antibody-dependent cell-mediated cytotoxicities (ADCCs) in the in vitro xenoimmune assay system. In addition, cytotoxic T lymphocytes (CTLs), natural killer cells, and K cell activity were found. Since even the F(ab')2 fragment of mAbs did not inhibit the cytolytic effect, the mAbs defined antigens may not be major target molecules for CTLs. In summary, two molecular species of tumor antigen(s) were identified by mAbs to be present on colon tumor cell lines, LS180 and LS174T. (Abstract shortened with permission of author.) ^
Resumo:
To investigate the hypothesis that increased malignant potential correlates with increased levels of genetic instability, the following parameters of instability were measured: (1) spontaneous mutation rates for ouabain resistance in murine cell lines of different malignant potentials, (2) the background prevalence of 6-thioguanine (6-TG) resistance in clone 4 (highly metastatic) and clone 19 (poorly metastatic) of the K1735 murine melanoma, (3) the prevalence of ouabain resistant variants in three murine cell lines and their variants after exposure to the mutagen MNNG, (4) the rate of generation of major karyotypic abnormalities in B16 F1 (poorly metastatic) and B16 F10 (highly metastatic) murine melanoma, and (5) analysis of the G-banded karyotypes of cloned B16 F1 and B16 F10 melanoma.^ No correlation of increased spontaneous mutation rates with increased malignant potential was found in repeated experiments with three murine cell lines and their variants of different malignant potential. The background prevalence of g-TG resistance was not significantly different for the poorly and highly metastatic clones of K1735 melanoma. The studies with MNNG-induced mutation showed no increased sensitivity of the highly metastatic variants of the three murine cell lines to mutagenesis. Neither did the rate of generation of major karyotypic abnormalities correlate with malignant potential. However, certain karyotypic differences were demonstrated after G-banding of the B16 F1 and F10 melanomas.^ One hypothesis which is consistent with these results is that the rate of generation of genetic abnormalities need not be strongly related to the degree of malignant potential. An increased prevalence of genetic changes may merely reflect the accumulation of abnormalities while their rate of production remains constant. The presence of specific nonrandom changes likely is the main determinant of malignant potential rather than the rate of production of random changes. ^
Resumo:
Hepatocellular carcinoma (HCC) is one of the commonest causes of death from cancer. A plethora of metabolomic investigations of HCC have yielded molecules in biofluids that are both up- and down-regulated but no real consensus has emerged regarding exploitable biomarkers for early detection of HCC. We report here a different approach, a combined transcriptomics and metabolomics study of energy metabolism in HCC. A panel of 31 pairs of HCC tumors and corresponding nontumor liver tissues from the same patients was investigated by gas chromatography-mass spectrometry (GCMS)-based metabolomics. HCC was characterized by ∼2-fold depletion of glucose, glycerol 3- and 2-phosphate, malate, alanine, myo-inositol, and linoleic acid. Data are consistent with a metabolic remodeling involving a 4-fold increase in glycolysis over mitochondrial oxidative phosphorylation. A second panel of 59 HCC that had been typed by transcriptomics and classified in G1 to G6 subgroups was also subjected to GCMS tissue metabolomics. No differences in glucose, lactate, alanine, glycerol 3-phosphate, malate, myo-inositol, or stearic acid tissue concentrations were found, suggesting that the Wnt/β-catenin pathway activated by CTNNB1 mutation in subgroups G5 and G6 did not exhibit specific metabolic remodeling. However, subgroup G1 had markedly reduced tissue concentrations of 1-stearoylglycerol, 1-palmitoylglycerol, and palmitic acid, suggesting that the high serum α-fetoprotein phenotype of G1, associated with the known overexpression of lipid catabolic enzymes, could be detected through metabolomics as increased lipid catabolism. Conclusion: Tissue metabolomics yielded precise biochemical information regarding HCC tumor metabolic remodeling from mitochondrial oxidation to aerobic glycolysis and the impact of molecular subtypes on this process.
Resumo:
In diagnostic neuroradiology as well as in radiation oncology and neurosurgery, there is an increasing demand for accurate segmentation of tumor-bearing brain images. Atlas-based segmentation is an appealing automatic technique thanks to its robustness and versatility. However, atlas-based segmentation of tumor-bearing brain images is challenging due to the confounding effects of the tumor in the patient image. In this article, we provide a brief background on brain tumor imaging and introduce the clinical perspective, before we categorize and review the state of the art in the current literature on atlas-based segmentation for tumor-bearing brain images. We also present selected methods and results from our own research in more detail. Finally, we conclude with a short summary and look at new developments in the field, including requirements for future routine clinical use.
Resumo:
Tricyclo-DNA (tc-DNA) is a conformationally restricted oligonucleotide analogue that exhibits promising properties as a robust antisense agent. Here we report on the synthesis and biochemical characterization of tc-TTP, the triphosphate of a tc-DNA nucleoside containing the base thymine. Tc-TTP turned out to be a substrate for the Vent (exo−) DNA polymerase, a polymerase that allows for multiple incorporations of tc-T nucleotides under primer extension reaction conditions. However, the substrate acceptance is rather low, as also observed for other sugar-modified analogues. Tc-TTP and tc-nucleotide-containing templates do not sustain enzymatic polymerization under physiological conditions; this indicates that tc-DNA-based antisense agents will not enter natural metabolic pathways that lead to long-term toxicity.
Resumo:
Abstract Alteration of the surface glycosylation pattern on malignant cells potentially affects tumor immunity by directly influencing interactions with glycan-binding proteins (lectins) on the surface of immunomodulatory cells. The sialic acid-binding Ig-like lectins Siglec-7 and -9 are MHC class I-independent inhibitory receptors on human NK cells that recognize sialic acid-containing carbohydrates. Here, we found that the presence of Siglec-9 defined a subset of cytotoxic NK cells with a mature phenotype and enhanced chemotactic potential. Interestingly, this Siglec-9+ NK cell population was reduced in the peripheral blood of cancer patients. Broad analysis of primary tumor samples revealed that ligands of Siglec-7 and -9 were expressed on human cancer cells of different histological types. Expression of Siglec-7 and -9 ligands was associated with susceptibility of NK cell-sensitive tumor cells and, unexpectedly, of presumably NK cell-resistant tumor cells to NK cell-mediated cytotoxicity. Together, these observations have direct implications for NK cell-based therapies and highlight the requirement to consider both MHC class I haplotype and tumor-specific glycosylation.
Resumo:
In contrast to preoperative brain tumor segmentation, the problem of postoperative brain tumor segmentation has been rarely approached so far. We present a fully-automatic segmentation method using multimodal magnetic resonance image data and patient-specific semi-supervised learning. The idea behind our semi-supervised approach is to effectively fuse information from both pre- and postoperative image data of the same patient to improve segmentation of the postoperative image. We pose image segmentation as a classification problem and solve it by adopting a semi-supervised decision forest. The method is evaluated on a cohort of 10 high-grade glioma patients, with segmentation performance and computation time comparable or superior to a state-of-the-art brain tumor segmentation method. Moreover, our results confirm that the inclusion of preoperative MR images lead to a better performance regarding postoperative brain tumor segmentation.