965 resultados para Systemic Acquired Resistance
Resumo:
The relaxor ferroelectric compositions Pb(Fe1/2Nb1/2)O-3 (PEN) and [Pb(Mg1/3Nb2/3)O-3](0.8)-[PbTiO3](0.2) (PMN-PT) are studied for their radiation response to the high energy heavy ions (50 MeV Li3+, fluence 1 X 10(13)-1 X 10(14) ions/cm(2)) in terms of their structural, dielectric and piezoelectric properties. There was no change in the crystallinity of both the compositions after irradiation as seen from the XRD. The PEN composition did not show much change in the dielectric constant but the value of T-m decreased by 8degreesC. The PMN-PT composition showed an increase in the dielectric constant with increase in the irradiation fluence from 1 x 10(13) to 1 X 10(14) ions/cm(2) with no change in the value of T-m. The piezoelectric coefficient decreased in both the samples after irradiation. Among the compositions studied, PEN is observed to be more radiation resistant to changes in structural and dielectric properties than PM-PT. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Existing soil nailing design methodologies are essentially based on limit equilibrium principles that together with a lumped factor of safety or a set of partial factors on the material parameters and loads account for uncertainties in design input parameter values. Recent trends in the development of design procedures for earth retaining structures are towards load and resistance factor design (LRFD). In the present study, a methodology for the use of LRFD in the context of soil-nail walls is proposed and a procedure to determine reliability-based load and resistance factors is illustrated for important strength limit states with reference to a 10 m high soil-nail wall. The need for separate partial factors for each limit state is highlighted, and the proposed factors are compared with those existing in the literature.
Resumo:
Cobalt and iron nanoparticles are doped in carbon nanotube (CNT)/polymer matrix composites and studied for strain and magnetic field sensing properties. Characterization of these samples is done for various volume fractions of each constituent (Co and Fe nanoparticles and CNTs) and also for cases when only either of the metallic components is present. The relation between the magnetic field and polarization-induced strain are exploited. The electronic bandgap change in the CNTs is obtained by a simplified tight-binding formulation in terms of strain and magnetic field. A nonlinear constitutive model of glassy polymer is employed to account for (1) electric bias field dependent softening/hardening (2) CNT orientations as a statistical ensemble and (3) CNT volume fraction. An effective medium theory is then employed where the CNTs and nanoparticles are treated as inclusions. The intensity of the applied magnetic field is read indirectly as the change in resistance of the sample. Very small magnetic fields can be detected using this technique since the resistance is highly sensitive to strain. Its sensitivity due to the CNT volume fraction is also discussed. The advantage of this sensor lies in the fact that it can be molded into desirable shape and can be used in fabrication of embedded sensors where the material can detect external magnetic fields on its own. Besides, the stress-controlled hysteresis of the sample can be used in designing memory devices. These composites have potential for use in magnetic encoders, which are made of a magnetic field sensor and a barcode.
Resumo:
Chemotherapy is a very important therapeutic strategy for cancer treatment. The failure of conventional and molecularly targeted chemotherapeutic regimes for the treatment of pancreatic cancer highlights a desperate need for novel therapeutic interventions. Chemotherapy often fails to eliminate all tumor cells because of intrinsic or acquired drug resistance, which is the most common cause of tumor recurrence. Overexpression of RAD51 protein, a key player in DNA repair/recombination has been observed in many cancer cells and its hyperexpression is implicated in drug resistance. Recent studies suggest that RAD51 overexpression contributes to the development, progression and drug resistance of pancreatic cancer cells. Here we provide a brief overview of the available pieces of evidence in support of the role of RAD51 in pancreatic tumorigenesis and drug resistance, and hypothesize that RAD51 could serve as a potential biomarker for diagnosis of pancreatic cancer. We discuss the possible involvement of RAD51 in the drug resistance associated with epithelial to mesenchymal transition and with cancer stem cells. Finally, we speculate that targeting RAD51 in pancreatic cancer cells may be a novel approach for the treatment of pancreatic cancer. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The radiation resistance of off-set series slots has been calculated for microstrip lines using the method proposed by Breithaupt for strip lines. A suitable transformation is made to allow for the difference in structure. Curves relating the slot resistance to the microstrip length, width and off-set distance have been obtained. Microstrip slot antenna arrays are becoming important in applications where size and weight are of significance. The radiation resistance is a very significant parameter is the design of such arrays. Oliner first calculated the radiation conductance of centered series slots in strip transmission lines and that analysis was extended by Breithaupt to the off-set series slots in stripline. The radiation resistance of off-set series slots in microstrip lines is calculated in this paper and data are obtained for different slot lengths, slot widths and off-set values. An example of the use of these data in array antenna design in shown.
Resumo:
Pathogen encoded peptidases are known to be important during infection; however, their roles in modulating host responses in immunocompromised individuals are not well studied. The roles of S. typhimurium (WT) encoded Peptidase N (PepN), a major aminopeptidase and sole M1 family member, was studied in mice lacking Interferon-γ (IFNγ), a cytokine important for immunity. S. typhimurium lacking pepN (ΔpepN) displays enhanced colony forming units (CFU) compared to WT in peripheral organs during systemic infection in C57BL/6 mice. However, Ifnγ(-/-) mice show higher CFU compared to C57BL/6 mice, resulting in lower fold differences between WT and ΔpepN. Concomitantly, reintroduction of pepN in ΔpepN (ΔpepN/pepN) reduces CFU, demonstrating pepN-dependence. Interestingly, expression of a catalytically inactive PepN (ΔpepN/E298A) also lowers CFU, demonstrating that the decrease in CFU is independent of the catalytic activity of PepN. In addition, three distinct differences are observed between infection of C57BL/6 and Ifnγ(-/-) mice: First, serum amounts of TNFα and IL1β post infection are significantly lower in Ifnγ(-/-) mice. Second, histological analysis of C57BL/6 mice reveals that damage in spleen and liver upon infection with WT or ΔpepN is greater compared to ΔpepN/pepN or ΔpepN/E298A. On the other hand, Ifnγ(-/-) mice are highly susceptible to organ damage by all strains of S. typhimurium used in this study. Finally, greater survival of C57BL/6, but not Ifnγ(-/-) mice, is observed upon infection with ΔpepN/pepN or ΔpepN/E298A. Overall, the roles of the host encoded IFNγ during infection with S. typhimurium strains with varying degrees of virulence are highlighted.
Resumo:
The vertical uplift resistance for a group of two horizontal coaxial rigid strip anchors embedded in clay under undrained condition has been determined by using the upper bound theorem of limit analysis in combination with finite elements. An increase of undrained shear strength of soil mass with depth has been incorporated. The uplift factor F-c gamma has been computed. As compared to a single isolated anchor, a group of two anchors provides greater magnitude of the uplift resistance. For a given embedment ratio, the group of two anchors generates almost the maximum uplift resistance when the upper anchor is located midway between ground surface and the lower anchor. For a given embedment ratio, F-c gamma increases linearly with an increase in the normalized unit weight of soil mass up to a certain value before attaining a certain maximum magnitude; the maximum value of F-c gamma increases with an increase in embedment ratio. DOI: 10.1061/(ASCE)GT.19435606.0000599. (C) 2012 American Society of Civil Engineers.
Resumo:
Typhoid fever is a systemic disease caused by the human specific Gram-negative pathogen Salmonella enterica serovar Typhi (S Typhi). The extra-intestinal infections caused by Salmonella are very fatal. The incidence of typhoid fever remains very high in impoverished areas and the emergence of multidrug resistance has made the situation worse. To combat and to reduce the morbidity and mortality caused by typhoid fever, many preventive measures and strategies have been employed, the most important being vaccination. In recent years, many Salmonella vaccines have been developed including live attenuated as well as DNA vaccines and their clinical trials have shown encouraging results. But with the increasing antibiotic resistance, the development of potent vaccine candidate for typhoid fever is a need of the hour. This review discusses the latest trends in the typhoid vaccine development and the clinical trials which are underway.
Resumo:
We address a physics-based simplified analytical formulation of the diffusive electrical resistance ( (Omega)) and Seebeck coefficient () in a PbTe nanowire dominated by acoustic phonon scattering under the presence of a low static longitudinal electric field. The use of a second-order nonparabolic electron energy band structure involving a geometry-dependent band gap has been selected in principle to demonstrate that the electron mean free path (MFP) in such a system can reach as low as about 8 nm at room temperature for a 10-nm-wide PbTe nanowire. This is followed by the formulation of the carrier back-scattering coefficient for determination of (Omega) and as functions of wire dimensions, temperature, and the field, respectively. The present analytical formulation agrees well with the available experimental data and may find extensive use in determination of various electrothermal transport phenomena in PbTe-based one-dimensional electron devices.
Resumo:
In this work, Plasma Nitriding was carried out at a temperature of 570 degrees C on nuclear grade austenitic stainless steel type AISI 316 LN (316LN SS) in a gas mixture of 20% N-2-80% H-2 to improve the surface hardness and thereby sliding wear resistance. The Plasma Nitride (PN) treated surface has been characterized by Vickers microhardness measurements, Scanning Electron Microscopic (SEM) examination, X-ray Diffraction (XRD) and sliding wear assessment. The average thickness of the PN layer was found to be 70 mu m. Microhardness measurements showed a significant increase in the hardness from 210 HV25g (unnitrided sample) to 1040 HV25g (Plasma Nitrided sample). The XRD reveals that PN layer consists of CrN, Fe4N and Fe3N phases along with austenite phase. The tribological parameters such as the friction coefficient and wear mechanism have been evaluated at ambient conditions for PN treated ring (PN ring) vs. ASTM A453 grade 660 pin (ASTM pin), PN ring vs. Nickel based alloy hard faced pin (Colmonoy pin), PN ring vs. 316LN SS pin and 316LN SS ring vs. 316LN SS pin. The wear tracks have been analyzed by SEM, Energy Dispersive X-ray Analysis (EDX) and Optical Profilometry. The untreated 316LN SS ring vs. 316LN SS pin produced severe wear and was characterized by a combination of delamination and adhesion wear mechanism, whereas wear mechanism of the PN rings reveals mild abrasion and a transfer layer from pin materials. (C) 2012 Elsevier B.V. All rights reserved.