869 resultados para Sustainable Energy Policy


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Provides an overview of the ethanol industry in Illinois including a timeline on the history of the U.S. ethanol industry. Also discusses government support of the industry in the state of Illinois and summarizes controversies associated with the industry and its financial impact on the Illinois economy.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Mode of access: Internet.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Carbon possesses unique electrical and structural properties that make it an ideal material for use in fuel cell construction. In alkaline, phosphoric acid and proton-exchange membrane fuel cells (PEMFCs), carbon is used in fabricating the bipolar plate and the gas-diffusion layer. It can also act as a support for the active metal in the catalyst layer. Various forms of carbon - from graphite and carbon blacks to composite materials - have been chosen for fuel-cell components. The development of carbon nanotubes and the emergence of nanotechnology in recent years has therefore opened up new avenues of matenials development for the low-temperature fuel cells, particularly the hydrogen PEMFC and the direct methanol PEMFC. Carbon nanotubes and aerogels are also being investigated for use as catalyst support, and this could lead to the production of more stable, high activity catalysts, with low platinum loadings (< 0.1 Mg cm(-2)) and therefore low cost. Carbon can also be used as a fuel in high-temperature fuel cells based on solid oxide, alkaline or molten carbonate technology. In the direct carbon fuel cell (DCFC), the energy of combustion of carbon is converted to electrical power with a thermodynamic efficiency close to 100%. The DCFC could therefore help to extend the use of fossil fuels for power generation as society moves towards a more sustainable energy future. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This chapter discusses the current state of biomass-based combined heat and power (CHP) production in the UK. It presents an overview of the UK's energy policy and targets which are relevant to the deployment of biomass-based CHP and summarises the current state for renewable, biomass and CHP. A number of small-scale biomass-based CHP projects are described while providing some indicative capital costs for combustion, pyrolysis and gasification technologies. For comparison purposes, it presents an overview of the respective situation in Europe and particularly in Sweden, Finland and Denmark. There is also a brief comment about novel CHP technologies in Austria. Finally it draws some conclusions on the potential of small-scale biomass CHP in the UK. © 2011 Woodhead Publishing Limited All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desalination of groundwater is essential in arid regions that are remote from both seawater and freshwater resources. Desirable features of a groundwater desalination system include a high recovery ratio, operation from a sustainable energy source such as solar, and high water output per unit of energy and land. Here we propose a new system that uses a solar-Rankine cycle to drive reverse osmosis (RO). The working fluid such as steam is expanded against a power piston that actuates a pump piston which in turn pressurises the saline water thus passing it through RO membranes. A reciprocating crank mechanism is used to equalise the forces between the two pistons. The choice of batch mode in preference to continuous flow permits maximum energy recovery and minimal concentration polarisation in the vicinity of the RO membrane. This study analyses the sizing and efficiency of the crank mechanism, quantifies energy losses in the RO separation and predicts the overall performance. For example, a system using a field of linear Fresnel collectors occupying 1000 m2 of land and raising steam at 200 °C and 15.5 bar could desalinate 350 m3/day from saline water containing 5000 ppm of sodium chloride with a recovery ratio of 0.7.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This review covers the production and utilisation of liquids from the thermal processing of biomass and related materials to substitute for synthetic phenol and formaldehyde in phenol formaldehyde resins. These resins are primarily employed in the manufacture of wood panels such as plywood, MDF, particle-board and OSB. The most important thermal conversion methods for this purpose are fast pyrolysis and vacuum pyrolysis, pressure liquefaction and phenolysis. Many feedstocks have been tested for their suitability as sources of phenolics including hard and softwoods, bark and residual lignins. Resins have been prepared utilising either the whole liquid product, or a phenolics enriched fraction obtained after fractional condensation or further processing, such as solvent extraction. None of the phenolics production and fractionation techniques covered in this review are believed to allow substitution of 100% of the phenol content of the resin without impacting its effectiveness compared to commercial formulations based on petroleum derived phenol. This survey shows that considerable progress has been made towards reaching the goal of a price competitive renewable resin, but that further research is required to meet the twin challenges of low renewable resin cost and satisfactory quality requirements. Particular areas of concern are wood panel press times, variability of renewable resin properties, odour, lack of reactive sites compared to phenol and potential for increased emissions of volatile organic compounds.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Liquids and gases produced through biomass pyrolysis have potential as renewable fuels to replace fossil fuels in conventional internal combustion engines. This review compares the properties of pyrolysis fuels, produced from a variety of feedstocks and using different pyrolysis techniques, against those of fossil fuels. High acidity, the presence of solid particles, high water content, high viscosity, storage and thermal instability, and low energy content are typical characteristics of pyrolysis liquids. A survey of combustion, performance and exhaust emission results from the use of pyrolysis liquids (both crude and up-graded) in compression ignition engines is presented. With only a few exceptions, most authors have reported difficulties associated with the adverse properties of pyrolysis liquids, including: corrosion and clogging of the injectors, long ignition delay and short combustion duration, difficulty in engine start-up, unstable operation, coking of the piston and cylinders and subsequent engine seizure. Pyrolysis gas can be used more readily, either in spark ignition or compression ignition engines; however, NO reduction techniques are desirable. Various approaches to improve the properties of pyrolysis liquids are discussed and a comparison of the properties of up-graded vs. crude pyrolysis liquid is included. Further developments in up-gradation techniques, such as hydrocracking and bio-refinery approaches, could lead to the production of green diesel and green gasoline. Modifications required to engines for use with pyrolysis liquids, for example in the fuel supply and injection systems, are discussed. Storage stability and economic issues are also reviewed. Our study presents recent progress and important R&D areas for successful future use of pyrolysis fuels in internal combustion engines.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Desalination of groundwater is essential in many arid areas that are far from both seawater and fresh water resources. The ideal groundwater desalination system should operate using a sustainable energy source and provide high water output per land area and cost. To avoid discharging voluminous brine, it should also provide high recovery. To achieve these aims, we have designed DesaLink, a novel approach to linking the solar Rankine cycle to reverse osmosis (RO). To achieve high recovery without the need for multiple RO stages, DesaLink adopts a batch mode of operation. It is suited to use with a variety of solar thermal collectors including linear Fresnel reflectors (LFR). For example, using a LFR occupying 1,000m of land and providing steam at 200°C and 15.5 bar, DesaLink is predicted to provide 350m of fresh water per day at a recovery ratio of 0.7, when fed with brackish groundwater containing 5,000ppm of sodium chloride. Here, we report preliminary experiments to assess the feasibility of the concept. We study the effects of longitudinal dispersion, concentration polarisation and describe a pilot experiment to demonstrate the batch process using a materials testing machine. In addition, we demonstrate a prototype of DesaLink running from compressed air to simulate steam.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pyrolysis is an energy conversion technology which by heating organic materials in the absence of oxygen, produces liquid, gaseous, and solid fuel products. Biochar, the solid product, can also be used as a soil amendment and, simultaneously, enables us to sequester carbon in the soil. By controlling the pyrolysis process, it is possible to engineer biochar suitable for the remediation of specific soil management problems. This research uses a characterization method more suited to producing biochar for soil amendment purposes than the existing biochar fuel characterization standards. This is the first research to use wastewater irrigated willow as a pyrolysis feedstock. The extensive characterization of biochar produced over a range of temperatures (410-810°C) yielded data on key properties relevant to soil under management: low surface area (1.4 to 5.4 m2/g), low bulk density (0.15-0.18 g/cm3), high pH values (7.8-9.4) and high water-holding capacity (1.8 to 4.3 cm3/g). Extraction experiments demonstrated low bioavailability of char nutrients (N, P, K, Ca, and Mg). This research also studied this artificial nitrogen cycle of pyrolysis: nitrogen accumulated in the wood from the wastewater and high levels of nitrogen remained in the biochar in a stable form not directly available to plants. Copyright © 2013 American Institute of Chemical Engineers Environ Prog.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fast pyrolysis of biomass is becoming increasingly important in some member countries of the International Energy Agency (IEA). Six countries have joined the IEA Task 34 of the Bioenergy Activity: Canada, Finland, Germany, Netherlands, UK, and USA. The National Task Leaders give an overview of the current activities in their countries both on research, pilot and demonstration level. © 2012 Elsevier Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A comprehensive examination is made of the characteristics and quality requirements of bio-oil from fast pyrolysis of biomass. An appreciation of the potential for bio-oil to meet a broad spectrum of applications in renewable energy has led to a significantly increased R&D activity that has focused on addressing liquid quality issues both for direct use for heat and power and indirect use for biofuels and green chemicals. This increased activity is evident in North America, Europe, and Asia with many new entrants as well as expansion of existing activities. The only disappointment is the more limited industrial development and also deployment of fast pyrolysis processes that are necessary to provide the basic bio-oil raw material. © 2012 American Institute of Chemical Engineers (AIChE).

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The deployment of bioenergy technologies is a key part of UK and European renewable energy policy. A key barrier to the deployment of bioenergy technologies is the management of biomass supply chains including the evaluation of suppliers and the contracting of biomass. In the undeveloped biomass for energy market buyers of biomass are faced with three major challenges during the development of new bioenergy projects. What characteristics will a certain supply of biomass have, how to evaluate biomass suppliers and which suppliers to contract with in order to provide a portfolio of suppliers that best satisfies the needs of the project and its stakeholder group whilst also satisfying crisp and non-crisp technological constraints. The problem description is taken from the situation faced by the industrial partner in this research, Express Energy Ltd. This research tackles these three areas separately then combines them to form a decision framework to assist biomass buyers with the strategic sourcing of biomass. The BioSS framework. The BioSS framework consists of three modes which mirror the development stages of bioenergy projects. BioSS.2 mode for early stage development, BioSS.3 mode for financial close stage and BioSS.Op for the operational phase of the project. BioSS is formed of a fuels library, a supplier evaluation module and an order allocation module, a Monte-Carlo analysis module is also included to evaluate the accuracy of the recommended portfolios. In each mode BioSS can recommend which suppliers should be contracted with and how much material should be purchased from each. The recommended blend should have chemical characteristics within the technological constraints of the conversion technology and also best satisfy the stakeholder group. The fuels library is made up from a wide variety of sources and contains around 100 unique descriptions of potential biomass sources that a developer may encounter. The library takes a wide data collection approach and has the aim of allowing for estimates to be made of biomass characteristics without expensive and time consuming testing. The supplier evaluation part of BioSS uses a QFD-AHP method to give importance weightings to 27 different evaluating criteria. The evaluating criteria have been compiled from interviews with stakeholders and policy and position documents and the weightings have been assigned using a mixture of workshops and expert interview. The weighted importance scores allow potential suppliers to better tailor their business offering and provides a robust framework for decision makers to better understand the requirements of the bioenergy project stakeholder groups. The order allocation part of BioSS uses a chance-constrained programming approach to assign orders of material between potential suppliers based on the chemical characteristics of those suppliers and the preference score of those suppliers. The optimisation program finds the portfolio of orders to allocate to suppliers to give the highest performance portfolio in the eyes of the stakeholder group whilst also complying with technological constraints. The technological constraints can be breached if the decision maker requires by setting the constraint as a chance-constraint. This allows a wider range of biomass sources to be procured and allows a greater overall performance to be realised than considering crisp constraints or using deterministic programming approaches. BioSS is demonstrated against two scenarios faced by UK bioenergy developers. The first is a large scale combustion power project, the second a small scale gasification project. The Bioss is applied in each mode for both scenarios and is shown to adapt the solution to the stakeholder group importance and the different constraints of the different conversion technologies whilst finding a globally optimal portfolio for stakeholder satisfaction.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

tentially valuable innovations. In energy policy, much attention is given to analysing and incentivising customer demand, but new technologies also need new supply markets, to provide products and services to build, operate and maintain the innovative technology. This paper addresses the impact of supply constraints on the long-term viability of sustainability related innovations, using the case of energy from waste (EfW). Uncertainties in the pricing and availability of feedstock (i.e. waste) deter potential investors in EfW projects. We draw on prior supply management research to conceptualise the problem, and identify what steps might be taken to address it. Based on this analysis, we propose a research agenda aimed at purchasing and supply scholars and centred on the need to understand better how markets evolve and how stakeholders can (legitimately) influence the evolution of supply markets to support the adoption of sustainability related innovation. Within this broad case, specific themes are recommended for further investigation.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Dwindling oil reserves and growing concerns over CO2 emissions and associated climate change are driving the utilisation of renewable feedstocks as alternative, sustainable fuel sources. While rising oil prices are improving the commercial feasibility of biodiesel production, many current processes still employ homogeneous acid and/or base catalysts to transform plant or algae oil into the fatty acid methyl ester (FAME) components of biodiesel. Fuel purification requires energy intensive aqueous quench and neutralization steps, thus the rational design of new high activity catalysts is required to deliver biodiesel as a major player in the 21st century sustainable energy portfolio. Advances in the development of heterogeneous catalysts for biodiesel synthesis require catalysts with pore architectures designed to improve the accessibility of bulky viscous reactants typical of plant oils. Here we discuss how improvements to active site accessibility and catalyst activity in transesterification or esterification reactions can be achieved either by designing hierarchical pore networks or by pore expansion and use of interconnected pore architectures.