947 resultados para Surfactant flooding
Resumo:
A novel method using LB films as precursors to prepare pure inorganic ordered film with periodic structure was developed. Surfactant-stabilized SnO2 nanoparticulate organosols and TiO2 nanoparticulate organosols were prepared and used as spreading solutions. Using LB technique, the good film-forming ability of the surfactant-stabilized SnO2 nanoparticles and TiO2 nanoparticles was confirmed by the determination of the pi -A isotherms. The surfactant-stabilized SnO2 and TiO2 nanoparticulate monolayers were fabricated on the water surface and then were transferred to solid substrates (CaF2, quartz, silicon, and so on) alternately, layer-by-layer. Then the as-deposited alternate LB film was treated at different temperatures. The as-deposited alternate LB film and the treated film were characterized by Fourier transform infrared spectroscopy, UV visible spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. The results indicate that our method was successful. The as-deposited alternate LB film formed a periodic structure with a long spacing of 6.5 nm that was composed of SnO2 nanoparticles, TiO2 nanoparticles, and arachidic acid. The treated film composed of SnO2 nanoparticles and TiO2 nanoparticles formed a pure inorganic periodic structure with an ordered distance of 5.4 nm. (C) 2001 Academic Press.
Resumo:
An electrochemically stable monolayer of tris(2,2'-bipyridyl)ruthenium(II) was obtained for the first time. It was based on the electrostatic attachment of Ru(bpy)(3)(2+) to the benzene sulfonic acid monolayer film, which was covalently bound onto glassy carbon electrode by the electrochemical reduction of diazobenzene sulfonic acid. The surface-confined Ru(bpy)(3)(2+) underwent reversible surface process, and reacted with the coreactant, tripropylamine, to produce electrochemiluminescence. In view of the stability of the electrode, the results strongly suggested that light was emitted from the surface-confined Ru(bpy)(3)(2+), not from the detached Ru(bpy)(3)(2+). The Ru(bpy)(3)(2+) modified electrode was used to the determination of tripropylamine. It showed good linearity in the concentration range from 5 muM to 1 muM with a detection limit of 1 muM (S/N = 4). The good stability of the Ru(bpy)(3)(2+) modified electrode also showed that the benzene sulfonic acid monolayer film prepared can be served as an excellent support to construct multilayers. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Individual hydrophobically modified ethyl hydroxyethyl cellulose (HM-EHEC) molecules under different conditions were elongated using a new atomic force microscope (AFM) based technique-single-molecule force spectroscopy (SMFS). The critical concentration of HM-EHEC for micelle-like clusters at a solid/liquid interface was around 0.8 wt %, which is lower than that in solution. The different mechanical properties of HM-EHEC below and above the critical concentration were displayed on force-extension curves. Through a comparison with unmodified hydroxyethyl cellulose, substituent-induced effects on nanomechanical features of HM-EHEC were investigated. Because of hydrophobic interactions and cooperative binding with the polymer, surfactants such as sodium dodecyl sulfate (SDS) dramatically influence the elastic properties of HM-EHEC below the critical concentration, and further addition of SDS reduces the interactions between the hydrophobic groups and the surfactant.
Resumo:
MCM-41-hosted fluorescein mesophase was prepared by addition of the dye into the sol-gel mixture for the synthesis of MCM-41 mesoporous molecular sieve under microwave radiation. The as-synthesized organo-silica-surfactant material possessed hexagonal mesostructure with short-range symmetry and a uniform nanosize of about 30 nm. Furthermore, fluorescence spectrum, increase in lifetime and lack of aggregation at high concentration were discussed in terms of the effect of the host-guest interaction on these properties. (C) 2001 Published by Elsevier Science B.V.
Resumo:
In this paper, we report the optical properties of SnO2 semiconductor nanoparticles in hydrosols and those of SnO2 semiconductor nanoparticles in organosols in which the surfaces of the particles are coated by a layer of organic surfactant molecules. The photoluminescence spectra of SnO2 semiconductor nanoparticles in the hydrosols and organosols in different conditions were measured and discussed. We conclude that the surface structure of the SnO2 semiconductor nanoparticles affects their optical properties strongly. The oxygen deficiencies on the surface of SnO2 semiconductor nanoparticles play an important role in the optical properties. The surface modification of the particles effectively removes the surface defects of the particles and enhances the intensity of luminescence.
Resumo:
A successful micronization of water-insoluble poly(epsilon-caprolactone) (PCL) into narrowly distributed nanoparticles stable in water has not only enabled us to study the enzymatic biodegradation of PCL in water at 25 degrees C by a combination of static and dynamic laser light scattering (LLS), but also to shorten the biodegradation time by a factor of more than 10(3) compared with using a thin PCL film, i.e. a 1 week conventional experiment becomes a 4 min one. The time-average scattering intensity decreased linearly. It was interesting to find that the decrease of the scattering intensity was not accompanied by a decrease of the average size of the PCL nanoparticles, indicating that the enzyme, Lipase Pseudomonas (PS), ''eats'' the PCL nanoparticles one-by-one, so that the biodegradation rate is determined mainly by the: enzyme concentration. Moreover, we found that using anionic sodium lauryl sulphate instead of cationic hexadecyltrimethylammonium bromide as surfactant in the micronization can prevent the biodegradation, suggesting that the biodegradation involves two essential steps: the adsorption of slightly negatively charged Lipase PS onto the PCL nanoparticles and the interaction between Lipase PS and PCL. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The hydrosol of SnO2 nanoparticles are prepared by the method of colloid chemistry. The free piling up process of nanosized SnO2 colloid particles are investigated at the gas-liquid interface by LB and Brewster Angle Microscopy techniques. The result indicates that solid state monolayer and multilayer of SnO2 nanoparticles can be formed at the gas-liquid interface only by aging the sol in air or compressing it without amphiphiles surfactant.
Resumo:
New polybutadiene-based surfactants (LYF) were synthesized by sulfonation of liquid polybutadiene with acetal sulfate at an elevated temperature, and their properties in a liquid surfactant membrane (LSM) separation process were examined by comparison with the two polyisobutylene-based surfactants ECA4360 and EM301. It was found that LYF surfactants had satisfactory overall properties as regards stability, swelling, and demulsification Of the W/O emulsion in the cases of both acidic and caustic internal aqueous phases.
Resumo:
The adsorption of cationic surfactant cetylpyridinium bromide (CPB) on a glassy carbon (GC) electrode surface has been studied by spectroelectrochemistry with a long optical path length thin-layer cell (LOPTLC) for the first time. A fine adsorption isotherm of CPB molecules from an aqueous solution containing 0.10 M KBr has been obtained over the range of (1.00-8.00) x 10(-5) M. From theoretical calculation and experimental data, adsorption of CPB on the GC electrode surface shows four distinct orientations and three large orientation transitions. Compared with the ordinary isotherm, the differential isotherm is more characteristic and would be suitable for the study of orientation transitions of organic compounds. With a theoretical treatment of the adsorption isotherm, four orientations of adsorbed CPB on a GC electrode surface coincide with the Frumkin-Langmuir type. From adsorption parameters the Frumkin-Langmuir equations, the adsorption free energy and, therefore, the equilibrium constants of orientation transitions of the CPB molecule can be obtained.
Resumo:
Fish Lateolabrax japonicus were exposed to anion surfactant sodium dodecylbenzene sulfonate (SDBS) and sodium dodecyl sulfate (SDS) at 1 mg/l, respectively, for 6, 12 and 18 d, with one control group. Liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH) and glutathione S-transferase (GST) were determined; brain acetylcholinesterase (AChE) and liver inducible nitric oxide synthase (NOS) activities were also measured. The results of the study indicated that these parameters made different, sometimes, adverse responses to SDBS and SDS exposure, such as the activity of NOS can be inhibited by SDBS and induced by SDS, the different physico-chemical characteristics of SDBS and SDS should be responsible for their effects on enzyme activities. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
Screening experiments were conducted in order to find promising synthetic surfactants for harmful algal blooms (HABs) mitigation. The chemically synthesized surfactant cocamidopropyl betaine (CAPB) showed characteristics of relatively high inhibition efficiency, high biodegradability and low cost. The motility inhibition ratios of 10 mg/L CAPB on Cochlodinium polykrikoides and Alexandrium tamarense were about 60% after 5 min. The biodegradation test indicated that the half-life of CAPB in seawater was shorter than one day and 90% was biodegraded after five days under the initial concentration of 100 mg/L at 25degreesC. Further cell lysis experiments revealed the selective lysis effect of CAPB on different HAB organisms. More than 90% of C. polykrikoides lysed at the concentration of 10 mg/L CAPB after 24 h and at 15 mg/L CAPB after 4 h, whereas the lysis effect of CAPB on A. tamarense was slight, no more than 10% after 2 h interaction with 50 mg/L CAPB. This research provided preliminary data for CAPB as a candidate in harmful algal blooms mitigation and pointed out unresolved problems for its practical application in the meantime. (C) 2003 Elsevier Ltd. All rights reserved.
Resumo:
Fish Lateolabrax japonicus were exposed to 0.1 and 1 mg/L of anion surfactant sodium dodecylbenzene sulfonate (SDBS) and to 2 and 20 mu g/L of benzo[a]pyrene (B[a]P) for 6, 12, and 18 days, with control and solvent control groups. Liver antioxidant enzymes, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), reduced glutathione (GSH), and glutathione S-transferase (GST), were determined; brain acetyleholinesterase (AChE) and liver inducible nitric oxide synthase (iNOS) activities were also measured. The results indicated that (1) L. japonicus avoided oxidative damage through antioxidant systems; (2) SOD, GPx, and GSH were induced, and GST was inhibited and then induced by B[a]P exposure; and (3) CAT, GPx, and AChE were induced while NOS was inhibited, and GST was induced and then inhibited by SDBS stress in experimental period. (c) 2005 Elsevier Inc. All rights reserved.
Resumo:
Dendritic copper nanostructures of different morphologies were synthesized by a surfactant-free electrochemical method. Single crystal nature of the nanostructures was revealed from their X-ray diffraction and electron diffraction patterns. Mechanism of dendrite formation was discussed from thermodynamic aspects using the concept of supersaturation. Supersaturation of the copper metal reduced on the surface of the electrode was the crucial factor for the generation of different morphologies. Effects of applied potential, temperature, and the solution concentration on the supersaturation were studied. The NO3- and H2O2 electroreduction ability of the dendritic materials was tested. Use of copper dendrite-modified electrode as NO3- sensor was demonstrated.
Resumo:
After systemic investigation of the techniques,route lines and mechanisms about the remaining oil,the dynamic migration and congregation behavior of the remaining oil are discussed on base of interaction between flowing and enriching of water and oil.After the micro-scope modeling of the fluid flow in porous media and the changes in petrol-physical properties of the flowing system, the characters of fluid fields and the dynamic distribution of oil are discussed, among which the preference-flowing is focused on. Based on the preference-flowing in porous media, the concept of the preference-flowing channels is developed. According to above, heterogeneous distribution of water and oil in the field and dynamic mechanism of remaining oil are all obvious. media can be divided into three kinds, directional, stochastic, arbitrary porous media. The main research results are as following: 1. Treating the characteristic parameters such as permeability, porosity and wettability as regional parameter, the fluid field with high water-cut has been established by geostatistical method, among which the difference of flowing pores and the changes of its petrol-physical properties during flooding are studied. 2. The flow process of water and oil are recurrent in physical simulation experiments, in which the mechanisms and phenomena are caught and analyzed. Fluid flow mechanics in porous media with preference-flowing channels have been studied. 3. The mutual coupling between water and oil is induced and the mathematical evolution equations including this interaction were built. . 4. Through coupling effect between flowing water and oil, the dynamic migration and congregation behavior of remaining oil depend upon this coupling. 5. Coupling between water and oil act as driving force and trapping force for the remaining oil. The coupling model of thesis has been verified by simplified the numerical model and compared results with Ng35 oil reservoir in Gudao oil field, it has important theoretical and application values for improving precision of remaining oil and production performance prediction, and is a new method for studying the mechanics of remaining oil in channeled porous media has been established. Key words:flow field,high water-cut,coupling,dominant flow in porous media,remaining oil