993 resultados para Surface Reconstruction
Resumo:
Thirty-two surface sediment samples from the Southern Ocean (eastern Atlantic sector), between the Subtropical Front and the Weddell Gyre, were investigated to provide information on the distribution of modern organic-walled dinoflagellate cysts in relation to the oceanic fronts of the Antarctic Circumpolar Current (ACC). A clearly distinguishable distribution pattern was observed in relation to the water masses and fronts of the ACC. The dinoflagellate cysts of species characteristic of open oceanic environments, such as Impagidinium species, are highly abundant around the Subtropical Front, whereas south of this front, cosmopolitan species such as Nematosphaeropsis labyrinthus and the cysts of Protoceratium reticulatum characterise the transition from subtropical to subantarctic surface waters. The subantarctic surface waters are dominated by the cysts of heterotrophic dinoflagellates, such as Protoperidinium spp. and Selenopemphix antarctica. The cysts of Protoperidinium spp. form the dominant part of the assemblages around the Antarctic Polar Front, whereas S. antarctica concentrations increase further to the south. The presence of S. antarctica in sediments of the Maud Rise, a region of seasonal sea-ice cover, reflects its tolerance for low temperatures and sea-ice cover. A previously undescribed species, Cryodinium meridianum gen. nov. sp. nov., has a restricted distribution pattern between the Antarctic Polar Front and the ACC-Weddell Gyre Boundary.
Resumo:
Bulk delta15N values in surface sediment samples off the southwestern coast of Africa were measured to investigate the biogeochemical processes occurring in the water column. Nitrate concentrations and the degree of utilization of the nitrate pool are the predominant controls on sedimentary delta15N in the Benguela Current region. Denitrification does not appear to have had an important effect on the delta15N signal of these sediments and, based on delta15N and delta13C, there is little terrestrial input.
Resumo:
To investigate the potential use of the stable isotope composition of the vegetative cysts of the photosynthetic dinoflagellate Thoracosphaera heimii for quantitative palaeotemperature reconstructions a method has been developed to purify T. heimii cysts from sediment samples. Stable oxygen and carbon isotopes have been measured on T. heimii cysts from 21 surface sediment samples from the equatorial Atlantic and South Atlantic Oceans. Calculated temperatures based on the palaeotemperature equation for inorganic calcite precipitation generally reflect mean annual temperatures of the upper water column, notably of thermocline depths. Although the present results suggest that the isotopic composition of T. heimii shells might be formed in equilibrium with the seawater in which the shells are being formed, future investigations are required to determine possible effects of metabolic and kinetic processes on the fractionation process. This pilot study therefore forms the basis for future investigations on the development of this tool and the determination of a species-specific palaeotemperature equation. The wide geographic and stratigraphic distribution of T. heimii cysts in sediments, the stable position of T. heimii within the water column and the high resistance of its cysts against calcite dissolution underline its potential for a wide usability in palaeotemperature reconstructions.
Resumo:
The Eastern Mediterranean Transient (EMT) occurred in the Aegean Sea from 1988 to 1995 and is the most significant intermediate-to-deep Mediterranean overturning perturbation reported by instrumental records. The EMT was likely caused by accumulation of high salinity waters in the Levantine and enhanced heat loss in the Aegean Sea, coupled with surface water freshening in the Sicily Channel. It is still unknown whether similar transients occurred in the past and, if so, what their forcing processes were. In this study, sediments from the Sicily Channel document surface water freshening (SCFR) at 1910±12, 1812±18, 1725±25 and 1580±30 CE. A regional ocean hindcast links SCFR to enhanced deep-water production and in turn to strengthened Mediterranean thermohaline circulation. Independent evidence collected in the Aegean Sea supports this reconstruction, showing that enhanced bottom water ventilation in the Eastern Mediterranean was associated with each SCFR event. Comparison between the records and multi-decadal atmospheric circulation patterns and climatic external forcings indicates that Mediterranean circulation destabilisation occurs during positive North Atlantic Oscillation (NAO) and negative Atlantic Multidecadal Oscillation (AMO) phases, reduced solar activity and strong tropical volcanic eruptions. They may have recurrently produced favourable deep-water formation conditions, both increasing salinity and reducing temperature on multi-decadal time scales.
Resumo:
The Atlantic is regarded as a huge carbonate depocenter due to an on average deep calcite lysocline. However, calculations and models that attribute the calcite lysocline to the critical undersaturation depth (hydrographic or chemical lysocline) and not to the depth at which significant calcium carbonate dissolution is observed (sedimentary calcite lysocline) strongly overestimate the preservation potential of calcareous deep-sea sediments. Significant calcium carbonate dissolution is expected to begin firstly below 5000 m in the deep Guinea and Angola Basin and below 4400 m in the Cape Basin. Our study that is based on different calcium carbonate dissolution stages of the planktic foraminifera Globigerina bulloides clearly shows that it starts between 400 and 1600 m shallower depending on the different hydrographic settings of the South Atlantic Ocean. In particular, coastal areas are severely affected by increased supply of organic matter and the resultant production of metabolic CO2 which seems to create microenvironments favorable for dissolution of calcite well above the hydrographic lysocline.
Resumo:
A series of molecular organic markers were determined in surface sediments from the Gulf of Genoa (Ligurian Sea) in order to evaluate their potential for palaeo-environmental reconstructions. Allochthonous input can be characterized by the distributions of n-C29 and n-C31 alkanes, n-C26 and n-C28 alkanols and branched glycerol dialkyl glycerol tetraethers (GDGTs), whose concentrations are generally highest near the river mouths. In the open basin however, terrestrial n-alkanes and n-alkanols may have an additional, aeolian source. Autochthonous input is represented by crenarchaeol and isoprenoid GDGTs. Their concentrations are highest in the open basin showing the preference of Thaumarchaeota for oligotrophic waters. Indications of a significant degradation of sterols and C37 alkenones exclude these lipids as reliable productivity proxies. Using terrestrial and aquatic lipids as end-members allows estimating the percentage of terrestrial organic matter between 20% and 58% in the coastal area decreasing to 1 to 30% in the deep basin. The spatial distribution of sea surface temperature (SST) estimates using the alkenone-based UK'37 index is very similar to the autumnal (November) mean satellite-based SST distribution. Conversely, TEXH86-derived SST estimates are close to winter SSTs in the coastal area and summer SSTs in the open basin. This pattern reflects presumably a shift in the main production of Thaumarchaeota from the coastal area in winter to the open basin in summer. This study represents a major prerequisite for the future application of lipid biomarkers on sediment cores from the Gulf of Genoa.
Resumo:
Recent coccoliths from 52 surface sediment samples recovered from the south-eastern South Atlantic were examined qualitatively and quantitatively in order to assess the controlling mechanisms for their distribution patterns, such as ecological and preservational factors, and their role as carbonate producers. Total coccolith abundances range from 0.2 to 39.9 coccoliths*10**9/ g sediment. Four assemblages can be delineated by their coccolith content characterising the northern Benguela, the middle to southern Benguela, the Walvis Ridge and the deeper water. Distinctions are based on multivariate ordination techniques applied on the relative abundances of the most abundant taxa, Emiliania huxleyi, Calcidiscus leptoporus, Gephyrocapsa spp., Coccolithus pelagicus and subtropical to tropical species. The coccolith distribution seems to be temperature and nutrient controlled co-varying with the seaward extension of the upwelling filament zone in the Benguela. A preservation index (CEX') based on the differential dissolution behaviour of the delicate E. huxleyi and Gephyrocapsa ericsonii versus the robust C. leptoporus is applied in order to detect the position of the coccolith lysocline. Although some samples were recognised as dissolution-affected, the distribution of the coccoliths in the surface-sediments reflects the different oceanographic surface-water conditions. Mass estimations of the coccolith carbonate reveal coccoliths to be only minor contributors to the carbonate preserved in the surface sediments. The mean computed coccolith carbonate content is 17 wt.%, equivalent to a mean contribution of 23% to the bulk carbonate.
Resumo:
In the reconstruction of sea surface temperature (SST) from sedimentary archives, secondary sources, lateral transport and selective preservation are considered to be mainly negligible in terms of influencing the primary signal. This is also true for the archaeal glycerol dialkyl glycerol tetraethers (GDGTs) that form the basis for the TEX86 SST proxy. Our samples represent four years variability on a transect off Cape Blanc (NW Africa). We studied the subsurface production, vertical and lateral transport of intact polar lipids and core GDGTs in the water column at high vertical resolution on the basis of suspended particulate matter (SPM) samples from the photic zone, the subsurface oxygen minimum zone (OMZ), nepheloid layers (NL) and the water column between these. Furthermore we compared the water column SPM GDGT composition with that in underlying surface sediments. This is the first study that reports TEX86 values from the precursor intact polar lipids (IPLs) associated with specific head groups (IPL -specific TEX86). We show a clear deviation from the sea surface GDGT composition in the OMZ between 300 and 600 m. Since neither lateral transport nor selective degradation provides a satisfactory explanation for the observed TEX-derived temperature profiles with a bias towards higher temperatures for both core- and IPL -specific TEX86 values, we suggest that subsurface in situ production of archaea with a distinct relationship between lipid biosynthesis and temperature is the responsible mechanism. However, in the NW-African upwelling system the GDGT contribution of the OMZ to the surface sediments does not seem to affect the sedimentary TEX86 as it shows no bias and still reflects the signal of the surface waters between 0 and 60 m.
Resumo:
The tropical Pacific thermocline strength, depth, and tilt are critical to tropical mean state and variability. During the early Pliocene (~3.5 to 4.5 Ma), the Eastern Equatorial Pacific (EEP) thermocline was deeper and the cold tongue was warmer than today, which resulted in an mean state with a reduced zonal sea surface temperature gradient, or El Padre. However, it is unclear whether the deep thermocline was a local feature of the EEP or a basin-wide condition with global implications. Our measurements of Mg/Ca of Globorotalia tumida in a western equatorial Pacific site indicate Pliocene subsurface temperatures warmer than today; thus, El Padre included a basin-wide thermocline that was relatively warm, deep, and weakly tilted. At ~4 Ma, thermocline steepening was coupled to cooling of the cold tongue. Since ~4 Ma, the basin-wide thermocline cooled/shoaled gradually, with implications for thermocline feedbacks in tropical dynamics and the interpretation of TEX86-derived temperatures.
Resumo:
In contrast to the wide range of studies carried out in temperate and high-latitude oceanic regions, only a few studies have focused on recent and Holocene organic-walled dinoflagellate cyst assemblages from the tropics. This information is, however, essential for fully understanding the ability of species to adapt to different oceanographic regimes, and ultimately their potential application to local and regional palaeoenvironmental and palaeoceanographic reconstructions. Surface sediment samples of the western equatorial Atlantic Ocean north of Brazil, an area greatly influenced by Amazon River discharge waters, were therefore analysed in detail for their organic-walled dinoflagellate cyst content. A diverse association of 43 taxa was identified, and large differences in cyst distribution were observed. The cyst thanatocoenosis in bottom sediments reflects the seasonal advection of Amazon River discharge water through the Guyana Current and the North Equatorial Countercurrent well into the North Atlantic. To establish potential links between cyst distribution and the environmental conditions of the upper water column, distribution patterns were compared with mean temperature, salinity, density and stratification gradients within the upper water column (0-100 m) over different times of the year, using correspondence analysis and canonical correspondence analysis. The analyses show that differences in these parameters only play a subordinate role in determining species distribution. Instead, nutrient availability, or related factors, dominates the distribution pattern. The only possible indicators of slightly reduced salinities are Trinovantedinium applanatum and Lingulodinium machaerophorum. Four assemblage groups of cyst taxa with similar environmental affinities related to specific water masses/currents can be distinguished and have potential for palaeoenvironmental reconstruction.
Resumo:
This Special Issue of The Holocene contains 16 research papers based on a symposium at the 11th International Meeting of the European Union of Geosciences held in Strasbourg in April 2001. The aim of the symposium was a state-of-the-art assessment of empirical studies of postglacial marine and terrestrial climatic archives and their integration with numerical climate models. This editorial places the individual papers in the broader context of natural climate variability and anthropogenic impacts on the global climate system, regional differences in climate between maritime and continental areas, and the need for an improved theoretical basis for understanding the underlying causes of environmental change. The focus of the Special Issue is the dynamic and relatively well-understood climate of the North Atlantic and the European realm, where, in relation to the steepest offshore temperature gradient on Earth, observational data are abundant and many recent advances have been made in climate reconstruction from proxy archives. The editorial also contains a summary and overview of the papers included in the four main sections of the Special Issue, which emphasize: (1) numerical modelling experiments; (2) models of glacier buildup and equilibrium-line altitude; (3) marine and terrestrial proxy records of climatic change; and (4) multiproxy palaeoenvironmental reconstruction of a Portuguese lagoonal system.
Resumo:
Ostracodes were studied from deep Arctic Ocean cores obtained during the Arctic 91 expedition of the Polarstern to the Nansen, Amundsen and Makarov Basins, the Lomonosov Ridge, Morris Jesup Rise and Yermak Plateau, in order to investigate their distribution in Arctic Ocean deep water (AODW) and apply these data to paleoceanographic reconstruction of bottom water masses during the Quaternary. Analyses of coretop assemblages from Arctic 91 boxcores indicate the following: ostracodes are common at all depths between 1000 and 4500 m, and species distribution is strongly influenced by water mass characteristics and bathymetry; quantitative analyses comparing Eurasian and Canada Basin assemblages indicate that distinct assemblages inhabit regions east and west of the Lomonosov Ridge, a barrier especially important to species living in lower AODW; deep Eurasian Basin assemblages are more similar to those living in Greenland Sea deep water (GSDW) than those in Canada Basin deep water; two upper AODW assemblages were recognized throughout the Arctic Ocean, one living between 1000 and 1500 m, and the other, having high species diversity, at 1500-3000 m. Downcore quantitative analyses of species' abundances and the squared chord distance coefficient of similarity reveals a distinct series of abundance peaks in key indicator taxa interpreted to signify the following late Quaternary deep water history of the Eurasian Basin. During the Last Glacial Maximum (LGM), a GSDW/AODW assemblage, characteristic of cold, well oxygenated deep water > 3000 m today, inhabited the Lomonosov Ridge to depths as shallow as 1000 m, perhaps indicating the influence of GSDW at mid-depths in the central Arctic Ocean. During Termination 1, a period of high organic productivity associated with a strong inflowing warm North Atlantic layer occurred. During the mid-Holocene, several key faunal events indicate a period of warming and/or enhanced flow between the Canada and Eurasian Basins. A long-term record of ostracode assemblages from kastenlot core PS2200-5 (1073 m water depth) from the Morris Jesup Rise indicates a quasi-cyclic pattern of water mass changes during the last 300 kyr. Interglacial ostracode assemblages corresponding to oxygen isotope stages 1, 5, and 7 indicate rapid changes in dissolved oxygen and productivity during glacial-interglacial transitions.
Resumo:
Free and "bound" long-chain alkenones (C37?2 and C37?3) in oxidized and unoxidized sections of four organic matter-rich Pliocene and Miocene Madeira Abyssal Plain turbidites (one from Ocean Drilling Program site 951B and three from site 952A) were analyzed to determine the effect of severe post depositional oxidation on the value of Uk'37. The profiles of both alkenones across the redox boundary show a preferential degradation of the C37?3 compared to the C37?2 compound. Because of the high initial Uk'37 values and the way of calculating the Uk'37 this degradation hardly influences the Uk'37 profiles. However, for lower Uk'37 values, measured selective degradation would increase Uk'37 up to 0.17 units, equivalent to 5°C. For most of the Uk'37 band-width, much smaller degradation already increases Uk'37 beyond the analytical error (0.017 units). Consequently, for interpreting the Uk'37 record in terms of past sea surface temperatures, selective degradation needs serious consideration.