910 resultados para Support Decision System


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Human use of the oceans is increasingly in conflict with conservation of endangered species. Methods for managing the spatial and temporal placement of industries such as military, fishing, transportation and offshore energy, have historically been post hoc; i.e. the time and place of human activity is often already determined before assessment of environmental impacts. In this dissertation, I build robust species distribution models in two case study areas, US Atlantic (Best et al. 2012) and British Columbia (Best et al. 2015), predicting presence and abundance respectively, from scientific surveys. These models are then applied to novel decision frameworks for preemptively suggesting optimal placement of human activities in space and time to minimize ecological impacts: siting for offshore wind energy development, and routing ships to minimize risk of striking whales. Both decision frameworks relate the tradeoff between conservation risk and industry profit with synchronized variable and map views as online spatial decision support systems.

For siting offshore wind energy development (OWED) in the U.S. Atlantic (chapter 4), bird density maps are combined across species with weights of OWED sensitivity to collision and displacement and 10 km2 sites are compared against OWED profitability based on average annual wind speed at 90m hub heights and distance to transmission grid. A spatial decision support system enables toggling between the map and tradeoff plot views by site. A selected site can be inspected for sensitivity to a cetaceans throughout the year, so as to capture months of the year which minimize episodic impacts of pre-operational activities such as seismic airgun surveying and pile driving.

Routing ships to avoid whale strikes (chapter 5) can be similarly viewed as a tradeoff, but is a different problem spatially. A cumulative cost surface is generated from density surface maps and conservation status of cetaceans, before applying as a resistance surface to calculate least-cost routes between start and end locations, i.e. ports and entrance locations to study areas. Varying a multiplier to the cost surface enables calculation of multiple routes with different costs to conservation of cetaceans versus cost to transportation industry, measured as distance. Similar to the siting chapter, a spatial decisions support system enables toggling between the map and tradeoff plot view of proposed routes. The user can also input arbitrary start and end locations to calculate the tradeoff on the fly.

Essential to the input of these decision frameworks are distributions of the species. The two preceding chapters comprise species distribution models from two case study areas, U.S. Atlantic (chapter 2) and British Columbia (chapter 3), predicting presence and density, respectively. Although density is preferred to estimate potential biological removal, per Marine Mammal Protection Act requirements in the U.S., all the necessary parameters, especially distance and angle of observation, are less readily available across publicly mined datasets.

In the case of predicting cetacean presence in the U.S. Atlantic (chapter 2), I extracted datasets from the online OBIS-SEAMAP geo-database, and integrated scientific surveys conducted by ship (n=36) and aircraft (n=16), weighting a Generalized Additive Model by minutes surveyed within space-time grid cells to harmonize effort between the two survey platforms. For each of 16 cetacean species guilds, I predicted the probability of occurrence from static environmental variables (water depth, distance to shore, distance to continental shelf break) and time-varying conditions (monthly sea-surface temperature). To generate maps of presence vs. absence, Receiver Operator Characteristic (ROC) curves were used to define the optimal threshold that minimizes false positive and false negative error rates. I integrated model outputs, including tables (species in guilds, input surveys) and plots (fit of environmental variables, ROC curve), into an online spatial decision support system, allowing for easy navigation of models by taxon, region, season, and data provider.

For predicting cetacean density within the inner waters of British Columbia (chapter 3), I calculated density from systematic, line-transect marine mammal surveys over multiple years and seasons (summer 2004, 2005, 2008, and spring/autumn 2007) conducted by Raincoast Conservation Foundation. Abundance estimates were calculated using two different methods: Conventional Distance Sampling (CDS) and Density Surface Modelling (DSM). CDS generates a single density estimate for each stratum, whereas DSM explicitly models spatial variation and offers potential for greater precision by incorporating environmental predictors. Although DSM yields a more relevant product for the purposes of marine spatial planning, CDS has proven to be useful in cases where there are fewer observations available for seasonal and inter-annual comparison, particularly for the scarcely observed elephant seal. Abundance estimates are provided on a stratum-specific basis. Steller sea lions and harbour seals are further differentiated by ‘hauled out’ and ‘in water’. This analysis updates previous estimates (Williams & Thomas 2007) by including additional years of effort, providing greater spatial precision with the DSM method over CDS, novel reporting for spring and autumn seasons (rather than summer alone), and providing new abundance estimates for Steller sea lion and northern elephant seal. In addition to providing a baseline of marine mammal abundance and distribution, against which future changes can be compared, this information offers the opportunity to assess the risks posed to marine mammals by existing and emerging threats, such as fisheries bycatch, ship strikes, and increased oil spill and ocean noise issues associated with increases of container ship and oil tanker traffic in British Columbia’s continental shelf waters.

Starting with marine animal observations at specific coordinates and times, I combine these data with environmental data, often satellite derived, to produce seascape predictions generalizable in space and time. These habitat-based models enable prediction of encounter rates and, in the case of density surface models, abundance that can then be applied to management scenarios. Specific human activities, OWED and shipping, are then compared within a tradeoff decision support framework, enabling interchangeable map and tradeoff plot views. These products make complex processes transparent for gaming conservation, industry and stakeholders towards optimal marine spatial management, fundamental to the tenets of marine spatial planning, ecosystem-based management and dynamic ocean management.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The observation chart is for many health professionals (HPs) the primary source of objective information relating to the health of a patient. Information Systems (IS) research has demonstrated the positive impact of good interface design on decision making and it is logical that good observation chart design can positively impact healthcare decision making. Despite the potential for good observation chart design, there is a paucity of observation chart design literature, with the primary source of literature leveraging Human Computer Interaction (HCI) literature to design better charts. While this approach has been successful, this design approach introduces a gap between understanding of the tasks performed by HPs when using charts and the design features implemented in the chart. Good IS allow for the collection and manipulation of data so that it can be presented in a timely manner that support specific tasks. Good interface design should therefore consider the specific tasks being performed prior to designing the interface. This research adopts a Design Science Research (DSR) approach to formalise a framework of design principles that incorporates knowledge of the tasks performed by HPs when using observation charts and knowledge pertaining to visual representations of data and semiology of graphics. This research is presented in three phases, the initial two phases seek to discover and formalise design knowledge embedded in two situated observation charts: the paper-based NEWS chart developed by the Health Service Executive in Ireland and the electronically generated eNEWS chart developed by the Health Information Systems Research Centre in University College Cork. A comparative evaluation of each chart is also presented in the respective phases. Throughout each of these phases, tentative versions of a design framework for electronic vital sign observation charts are presented, with each subsequent iteration of the framework (versions Alpha, Beta, V0.1 and V1.0) representing a refinement of the design knowledge. The design framework will be named the framework for the Retrospective Evaluation of Vital Sign Information from Early Warning Systems (REVIEWS). Phase 3 of the research presents the deductive process for designing and implementing V0.1 of the framework, with evaluation of the instantiation allowing for the final iteration V1.0 of the framework. This study makes a number of contributions to academic research. First the research demonstrates that the cognitive tasks performed by nurses during clinical reasoning can be supported through good observation chart design. Secondly the research establishes the utility of electronic vital sign observation charts in terms of supporting the cognitive tasks performed by nurses during clinical reasoning. Third the framework for REVIEWS represents a comprehensive set of design principles which if applied to chart design will improve the usefulness of the chart in terms of supporting clinical reasoning. Fourth the electronic observation chart that emerges from this research is demonstrated to be significantly more useful than previously designed charts and represents a significant contribution to practice. Finally the research presents a research design that employs a combination of inductive and deductive design activities to iterate on the design of situated artefacts.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This work examines independence in the Canadian justice system using an approach adapted from new legal realist scholarship called ‘dynamic realism’. This approach proposes that issues in law must be considered in relation to their recursive and simultaneous development with historic, social and political events. Such events describe ‘law in action’ and more holistically demonstrate principles like independence, rule of law and access to justice. My dynamic realist analysis of independence in the justice system employs a range methodological tools and approaches from the social sciences, including: historical and historiographical study; public administrative; policy and institutional analysis; an empirical component; as well as constitutional, statutory interpretation and jurisprudential analysis. In my view, principles like independence represent aspirational ideals in law which can be better understood by examining how they manifest in legal culture and in the legal system. This examination focuses on the principle and practice of independence for both lawyers and judges in the justice system, but highlights the independence of the Bar. It considers the inter-relation between lawyer independence and the ongoing refinement of judicial independence in Canadian law. It also considers both independence of the Bar and the Judiciary in the context of the administration of justice, and practically illustrates the interaction between these principles through a case study of a specific aspect of the court system. This work also focuses on recent developments in the principle of Bar independence and its relation to an emerging school of professionalism scholarship in Canada. The work concludes by describing the principle of independence as both conditional and dynamic, but rooted in a unitary concept for both lawyers and judges. In short, independence can be defined as impartiality, neutrality and autonomy of legal decision-makers in the justice system to apply, protect and improve the law for what has become its primary normative purpose: facilitating access to justice. While both independence of the Bar and the Judiciary are required to support access to independent courts, some recent developments suggest the practical interactions between independence and access need to be the subject of further research, to better account for both the principles and the practicalities of the Canadian justice system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The generation of heterogeneous big data sources with ever increasing volumes, velocities and veracities over the he last few years has inspired the data science and research community to address the challenge of extracting knowledge form big data. Such a wealth of generated data across the board can be intelligently exploited to advance our knowledge about our environment, public health, critical infrastructure and security. In recent years we have developed generic approaches to process such big data at multiple levels for advancing decision-support. It specifically concerns data processing with semantic harmonisation, low level fusion, analytics, knowledge modelling with high level fusion and reasoning. Such approaches will be introduced and presented in context of the TRIDEC project results on critical oil and gas industry drilling operations and also the ongoing large eVacuate project on critical crowd behaviour detection in confined spaces.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The Iowa Department of Transportation began preparation for the acquisition of an electronic document management system in 1996. The first phase was development of a strategic plan. The plan provided guidelines for defining the acquisition and implementation of a document management system to automate document handling and distribution. Phase 2 involved developing draft standards (document, indexing and technology) for planning and implementation of a document management system. These standards were to identify existing industry standards and determine which standards would best support the specific requirements of the Iowa Department of Transportation. During development of these standards, the decision was made to enlarge the scope of this effort from a document management system to a records management system (RMS). Phase .3 identified business processes that were to be further developed as pilot projects of a much larger agency-wide records management system.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Current practices in agricultural management involve the application of rules and techniques to ensure high quality and environmentally friendly production. Based on their experience, agricultural technicians and farmers make critical decisions affecting crop growth while considering several interwoven agricultural, technological, environmental, legal and economic factors. In this context, decision support systems and the knowledge models that support them, enable the incorporation of valuable experience into software systems providing support to agricultural technicians to make rapid and effective decisions for efficient crop growth. Pest control is an important issue in agricultural management due to crop yield reductions caused by pests and it involves expert knowledge. This paper presents a formalisation of the pest control problem and the workflow followed by agricultural technicians and farmers in integrated pest management, the crop production strategy that combines different practices for growing healthy crops whilst minimising pesticide use. A generic decision schema for estimating infestation risk of a given pest on a given crop is defined and it acts as a metamodel for the maintenance and extension of the knowledge embedded in a pest management decision support system which is also presented. This software tool has been implemented by integrating a rule-based tool into web-based architecture. Evaluation from validity and usability perspectives concluded that both agricultural technicians and farmers considered it a useful tool in pest control, particularly for training new technicians and inexperienced farmers.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Computational intelligent support for decision making is becoming increasingly popular and essential among medical professionals. Also, with the modern medical devices being capable to communicate with ICT, created models can easily find practical translation into software. Machine learning solutions for medicine range from the robust but opaque paradigms of support vector machines and neural networks to the also performant, yet more comprehensible, decision trees and rule-based models. So how can such different techniques be combined such that the professional obtains the whole spectrum of their particular advantages? The presented approaches have been conceived for various medical problems, while permanently bearing in mind the balance between good accuracy and understandable interpretation of the decision in order to truly establish a trustworthy ‘artificial’ second opinion for the medical expert.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Extreme natural events, like e.g. tsunamis or earthquakes, regularly lead to catastrophes with dramatic consequences. In recent years natural disasters caused hundreds of thousands of deaths, destruction of infrastructure, disruption of economic activity and loss of billions of dollars worth of property and thus revealed considerable deficits hindering their effective management: Needs for stakeholders, decision-makers as well as for persons concerned include systematic risk identification and evaluation, a way to assess countermeasures, awareness raising and decision support systems to be employed before, during and after crisis situations. The overall goal of this study focuses on interdisciplinary integration of various scientific disciplines to contribute to a tsunami early warning information system. In comparison to most studies our focus is on high-end geometric and thematic analysis to meet the requirements of smallscale, heterogeneous and complex coastal urban systems. Data, methods and results from engineering, remote sensing and social sciences are interlinked and provide comprehensive information for disaster risk assessment, management and reduction. In detail, we combine inundation modeling, urban morphology analysis, population assessment, socioeconomic analysis of the population and evacuation modeling. The interdisciplinary results eventually lead to recommendations for mitigation strategies in the fields of spatial planning or coping capacity. © Author(s) 2009.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Various environmental management systems, standards and tools are being created to assist companies to become more environmental friendly. However, not all the enterprises have adopted environmental policies in the same scale and range. Additionally, there is no existing guide to help them determine their level of environmental responsibility and subsequently, provide support to enable them to move forward towards environmental responsibility excellence. This research proposes the use of a Belief Rule-Based approach to assess an enterprise’s level commitment to environmental issues. The Environmental Responsibility BRB assessment system has been developed for this research. Participating companies will have to complete a structured questionnaire. An automated analysis of their responses (using the Belief Rule-Based approach) will determine their environmental responsibility level. This is followed by a recommendation on how to progress to the next level. The recommended best practices will help promote understanding, increase awareness, and make the organization greener. BRB systems consist of two parts: Knowledge Base and Inference Engine. The knowledge base in this research is constructed after an in-depth literature review, critical analyses of existing environmental performance assessment models and primarily guided by the EU Draft Background Report on "Best Environmental Management Practice in the Telecommunications and ICT Services Sector". The reasoning algorithm of a selected Drools JBoss BRB inference engine is forward chaining, where an inference starts iteratively searching for a pattern-match of the input and if-then clause. However, the forward chaining mechanism is not equipped with uncertainty handling. Therefore, a decision is made to deploy an evidential reasoning and forward chaining with a hybrid knowledge representation inference scheme to accommodate imprecision, ambiguity and fuzzy types of uncertainties. It is believed that such a system generates well balanced, sensible and Green ICT readiness adapted results, to help enterprises focus on making improvements on more sustainable business operations.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Intelligent agents offer a new and exciting way of understanding the world of work. We apply agent-based simulation to investigate a set of problems in a retail context. Specifically, we are working to understand the relationship between human resource management practices and retail productivity. Our multi-disciplinary research team draws upon expertise from work psychologists and computer scientists. Our research so far has led us to conduct case study work with a top ten UK retailer. Based on our case study experience and data we are developing a simulator that can be used to investigate the impact of management practices (e.g. training, empowerment, teamwork) on customer satisfaction and retail productivity.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Early water resources modeling efforts were aimed mostly at representing hydrologic processes, but the need for interdisciplinary studies has led to increasing complexity and integration of environmental, social, and economic functions. The gradual shift from merely employing engineering-based simulation models to applying more holistic frameworks is an indicator of promising changes in the traditional paradigm for the application of water resources models, supporting more sustainable management decisions. This dissertation contributes to application of a quantitative-qualitative framework for sustainable water resources management using system dynamics simulation, as well as environmental systems analysis techniques to provide insights for water quality management in the Great Lakes basin. The traditional linear thinking paradigm lacks the mental and organizational framework for sustainable development trajectories, and may lead to quick-fix solutions that fail to address key drivers of water resources problems. To facilitate holistic analysis of water resources systems, systems thinking seeks to understand interactions among the subsystems. System dynamics provides a suitable framework for operationalizing systems thinking and its application to water resources problems by offering useful qualitative tools such as causal loop diagrams (CLD), stock-and-flow diagrams (SFD), and system archetypes. The approach provides a high-level quantitative-qualitative modeling framework for "big-picture" understanding of water resources systems, stakeholder participation, policy analysis, and strategic decision making. While quantitative modeling using extensive computer simulations and optimization is still very important and needed for policy screening, qualitative system dynamics models can improve understanding of general trends and the root causes of problems, and thus promote sustainable water resources decision making. Within the system dynamics framework, a growth and underinvestment (G&U) system archetype governing Lake Allegan's eutrophication problem was hypothesized to explain the system's problematic behavior and identify policy leverage points for mitigation. A system dynamics simulation model was developed to characterize the lake's recovery from its hypereutrophic state and assess a number of proposed total maximum daily load (TMDL) reduction policies, including phosphorus load reductions from point sources (PS) and non-point sources (NPS). It was shown that, for a TMDL plan to be effective, it should be considered a component of a continuous sustainability process, which considers the functionality of dynamic feedback relationships between socio-economic growth, land use change, and environmental conditions. Furthermore, a high-level simulation-optimization framework was developed to guide watershed scale BMP implementation in the Kalamazoo watershed. Agricultural BMPs should be given priority in the watershed in order to facilitate cost-efficient attainment of the Lake Allegan's TP concentration target. However, without adequate support policies, agricultural BMP implementation may adversely affect the agricultural producers. Results from a case study of the Maumee River basin show that coordinated BMP implementation across upstream and downstream watersheds can significantly improve cost efficiency of TP load abatement.