939 resultados para Superoxide Radical


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular superoxide dismutase (EC-SOD) is a secreted Cu and Zn-containing glycoprotein. While EC-SOD from most mammals is tetrameric and has a high affinity for heparin and heparan sulfate, rat EC-SOD has a low affinity for heparin, does not bind to heparan sulfate in vivo, and is apparently dimeric. To examine the molecular basis of the deviant physical properties of rat EC-SOD, the cDNAs of the rat and mouse EC-SODs were isolated and the deduced amino acid sequences were compared with that of human EC-SOD. Comparison of the sequences offered no obvious explanation of the differences. Analysis of a series of chimeric and point mutated EC-SODs showed that the N-terminal region contributes to the oligomeric state of the EC-SODs, and that a single amino acid, a valine (human amino acid position 24), is essential for the tetramerization. This residue is replaced by an aspartate in the rat. Rat EC-SOD carrying an Asp --> Val mutation is tetrameric and has a high heparin affinity, while mouse EC-SOD with a Val --> Asp mutation is dimeric and has lost its high heparin affinity. Thus, the rat EC-SOD dimer is converted to a tetramer by the exchange of a single amino acid. Furthermore, the cooperative action of four heparin-binding domains is necessary for high heparin affinity. These results also suggest that tetrameric EC-SODs are not symmetrical tetrahedrons, but composed of two interacting dimers, further supporting an evolutionary relationship with the dimeric cytosolic Cu and Zn-containing SODs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dominant mutations of the SOD1 gene encoding Cu,Zn superoxide dismutase have been found in members of certain families with familial amyotrophic lateral sclerosis (ALS). To better understand the contribution of SOD1 mutations in the pathogenesis of familial ALS, we developed transgenic mice expressing one of the mutations found in familial ALS. These animals display clinical and pathological features closely resembling human ALS. Early changes observed in these animals were intra-axonal and dendritic vacuoles due to dilatation of the endoplasmic reticulum and vacuolar degeneration of mitochondria. We have reported that the Golgi apparatus of spinal cord motor neurons in patients with sporadic ALS is fragmented and atrophic. In this study we show that spinal cord motor neurons of transgenic mice for an SOD1 mutation display a lesion of the Golgi apparatus identical to that found in humans with sporadic ALS. In these mice, the stacks of the cisternae of the fragmented Golgi apparatus are shorter than in the normal organelle, and there is a reduction in Golgi-associated vesicles and adjacent cisternae of the rough endoplasmic reticulum. Furthermore, the fragmentation of the Golgi apparatus occurs in an early, presymptomatic stage and usually precedes the development of the vacuolar changes. Transgenic mice overexpressing the wild-type human superoxide dismutase are normal. In familial ALS, an early lesion of the Golgi apparatus of motor neurons may have adverse functional effects, because newly synthesized proteins destined for fast axoplasmic transport pass through the Golgi apparatus.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We compare here the mechanisms of apoptotic death of PC12 cells induced by down-regulation of Cu2+,Zn2+ superoxide dismutase (SOD1) and withdrawal of trophic support (serum/nerve growth factor). Our previous results indicated that the initiating causes of death are different in each paradigm. However, bcl-2 rescues cells in either paradigm, suggesting common downstream elements to the cell death pathway. To determine whether the ICE [interleukin 1beta converting enzyme] family of proteases, which is required for apoptosis on trophic factor withdrawal, is also required for apoptosis induced by oxidative stress, we have developed a novel peptide inhibitor that mimics the common catalytic site of these enzymes and thereby blocks their access to substrates. This differs from the more usual pseudosubstrate approach to enzyme inhibition. Blockade of ICE family proteases by either this inhibitor or by a permeant competitive ICE family antagonist rescues PC12 cells from apoptotic death following apoptosis induced by down-regulation of SOD1, as well as from trophic factor/nerve growth factor deprivation. SOD1 down-regulation results in an increase in interleukin 1beta (IL- 1beta) production by the cells, and cell death under these conditions can be prevented by either blocking antibodies against IL-1beta or the IL-1 receptor antagonist (IL-1Ralpha). In contrast, trophic factor withdrawal does not increase IL-1beta secretion, and the blocking antibody failed to protect PC12 cells from trophic factor withdrawal, whereas the receptor antagonist was only partially protective at very high concentrations. There were substantial differences in the concentrations of pseudosubstrate inhibitors which rescued cells from SOD1 down-regulation and trophic factor deprivation. These results suggest the involvement of different members of the ICE family, different substrates, or both in the two different initiating causes of cell death.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Estradiol is known to exert a protective effect against the development of atherosclerosis, but the mechanism by which this protection is mediated is unclear. Since animal studies strongly suggest that production of endothelium-derived relaxing factor is enhanced by estradiol, we have examined the effect of estrogens on nitric oxide (NO) synthase (NOS) activity, protein, and mRNA in cultured bovine aortic endothelial cells. In reporter cells rich in guanylate cyclase, it has been observed that long-term treatment (> or = 24 hr) with ethinylestradiol (EE2) dose-dependently increased guanylate cyclase-activating factor activity in the conditioned medium of endothelial cells. However, conversion of L-[14C]arginine to L-[14C]citrulline by endothelial cell homogenate or quantification of nitrite and nitrate released by intact cells in the conditioned medium did not reveal any change in NOS activity induced by EE2 treatment. Similarly, Western and Northern blot analyses did not reveal any change in the endothelial NOS protein and mRNA content in response to EE2. However, EE2 dose- and time-dependently decreased superoxide anion production in the conditioned medium of endothelial cells with an EC50 value (0.1 nM) close to that which increased guanylate cyclase-activating factor activity (0.5 nM). Both of these effects were completely prevented by the antiestrogens tamoxifen and RU54876. Thus, endothelium exposure to estrogens appears to induce a receptor-mediated antioxidant effect that enhances the biological activity of endothelium-derived NO. These effects could account at least in part for the vascular protective properties of these hormones.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in the human Cu,Zn superoxide dismutase gene (SOD1) are found in 20% of kindreds with familial amyotrophic lateral sclerosis. Transgenic mice (line G1H) expressing a human SOD1 containing a mutation of Gly-93 --> Ala (G93A) develop a motor neuron disease similar to familial amyotrophic lateral sclerosis, but transgenic mice (line N1029) expressing a wild-type human SOD1 transgene do not. Because neurofilament (NF)-rich inclusions in spinal motor neurons are characteristic of amyotrophic lateral sclerosis, we asked whether mutant G1H and/or N1029 mice develop similar NF lesions. NF inclusions (i.e., spheroids, Lewy body-like inclusions) were first detected in spinal cord motor neurons of the G1H mice at 82 days of age about the time these mice first showed clinical evidence of disease. Other neuronal intermediate filament proteins (alpha-internexin, peripherin) also accumulated in these spheroids. The onset of accumulations of ubiquitin immunoreactivity in the G1H mice paralleled the emergence of vacuoles and NF-rich spheroids in neurons, but they did not colocalize exclusively with spheroids. In contrast, NF inclusions were not seen in the N1029 mice until they were 132 days old, and ubiquitin immunoreactivity was not increased in the N1029 mice even at 199 days of age. Astrocytosis in spinal cord was associated with a marked increase in glial fibrillary acidic protein immunoreactivity in the G1H mice, but not in the N1029 mice. Finally, comparative studies revealed a striking similarity between the cytoskeletal pathology in the G1H transgenic mice and in patients with amyotrophic lateral sclerosis. These findings link a specific SOD1 mutation with alterations in the neuronal cytoskeleton of patients with amyotrophic lateral sclerosis. Thus, neuronal cytoskeletal abnormalities may be implicated in the pathogenesis of human familial amyotrophic lateral sclerosis.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Hydroxyl radical damage in metastatic tumor DNA was elucidated in women with breast cancer, and a comparison was made with nonmetastatic tumor DNA. The damage was identified by using statistical models of modified base and Fourier transform-infrared spectral data. The modified base models revealed a greater than 2-fold increase in hydroxyl radical damage in the metastatic tumor DNA compared with the nonmetastatic tumor DNA. The metastatic tumor DNA also exhibited substantially greater base diversity than the nonmetastatic DNA, and a progression of radical-induced base damage was found to be associated with the growth of metastatic tumors. A three-dimensional plot of principal components from factor analysis, derived from infrared spectral data, also showed that the metastatic tumor DNA was substantially more diverse than the tightly grouped nonmetastatic tumor DNA. These cohesive, independently derived findings suggest that the hydroxyl radical generates DNA phenotypes with various metastatic potentials that likely contribute to the diverse physiological properties and heterogeneity characteristic of metastatic cell populations.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mutations in Cu/Zn superoxide dismutase (SOD), a hallmark of familial amyotrophic lateral sclerosis (FALS) in humans, are shown here to confer striking neuropathology in Drosophila. Heterozygotes with one wild-type and one deleted SOD allele retain the expected 50% of normal activity for this dimeric enzyme. However, heterozygotes with one wild-type and one missense SOD allele show lesser SOD activities, ranging from 37% for a heterozygote carrying a missense mutation predicted from structural models to destabilize the dimer interface, to an average of 13% for several heterozygotes carrying missense mutations predicted to destabilize the subunit fold. Genetic and biochemical evidence suggests a model of dimer dysequilibrium whereby SOD activity in missense heterozygotes is reduced through entrapment of wild-type subunits into unstable or enzymatically inactive heterodimers. This dramatic impairment of the activity of wild-type subunits in vivo has implications for our understanding of FALS and for possible therapeutic strategies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

N-Methyl-D-aspartate (NMDA) receptor-mediated neurotoxicity may depend, in part, on the generation of nitric oxide (NO.) and superoxide anion (O2.-), which react to form peroxynitrite (OONO-). This form of neurotoxicity is thought to contribute to a final common pathway of injury in a wide variety of acute and chronic neurologic disorders, including focal ischemia, trauma, epilepsy, Huntington disease, Alzheimer disease, amyotrophic lateral scelerosis, AIDS dementia, and other neurodegenerative diseases. Here, we report that exposure of cortical neurons to relatively short durations or low concentrations of NMDA, S-nitrosocysteine, or 3-morpholinosydnonimine, which generate low levels of peroxynitrite, induces a delayed form of neurotoxicity predominated by apoptotic features. Pretreatment with superoxide dismutase and catalase to scavenge O2.- partially prevents the apoptotic process triggered by S-nitrosocysteine or 3-morpholinosydnonimine. In contrast, intense exposure to high concentrations of NMDA or peroxynitrite induces necrotic cell damage characterized by acute swelling and lysis, which cannot be ameliorated by superoxide dismutase and catalase. Thus, depending on the intensity of the initial insult, NMDA or nitric oxide/superoxide can result in either apoptotic or necrotic neuronal cell damage.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Extracellular superoxide dismutase (EC-SOD; superoxide:superoxide oxidoreductase, EC 1.15.1.1) is a secreted Cu- and Zn-containing tetrameric glycoprotein, the bulk of which is bound to heparan sulfate proteoglycans in the interstitium of tissues. To test the function of EC-SOD in vivo, mice carrying a targeted disruption of the EC-SOD gene were generated. The EC-SOD null mutant mice develop normally and remain healthy until at least 14 months of age. No compensatory induction of other SOD isoenzymes or other antioxidant enzymes was observed. When stressed by exposure to > 99% oxygen, the EC-SOD null mutant mice display a considerable reduction in survival time compared to wild-type mice and an earlier onset of severe lung edema. These findings suggest that while under normal physiological conditions other antioxidant systems may substitute for the loss of EC-SOD; when the animal is stressed these systems are unable to provide adequate protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have studied the effects of food restriction (FR) and substitution of fish oil (FO; omega 3) for corn oil (CO; omega 6) on breast tumor incidence and survival in mouse mammary tumor virus/v-Ha-ras transgenic (Onco) mice. The diets were as follows: group 1, 5% (wt/wt) CO fed ad libitum (AL); group 2, 5% CO, restricted calories (40% fewer calories than AL; FR); group 3, 20% CO fed AL; and group 4, 20% FO fed AL. After 3 years, 40% of FR Onco (group 2) mice were alive, whereas there were no survivors in the other three groups. Similarly, tumor incidence was reduced to 27% (5 out of 18) in FR animals (group 2), whereas it was 83% (11 out of 13) in group 1 mice, 89% (16 out of 18) in group 3 mice, and 71% (10 out of 14) in group 4 mice. These protective effects of FR on survival and tumor incidence were paralleled by higher expression of the tumor suppressor gene p53 (wild type) and free-radical scavenging enzymes (catalase and superoxide dismutase) in breast tumors. Immunoblotting showed less ras gene product, p21, and increased p53 levels in the tumors of FR mice. In addition, FR decreased RNA levels of c-erbB-2, interleukin 6, and the transgene v-Ha-ras in tumors. In contrast, analysis of hepatic mRNA from tumor-bearing FR mice revealed higher expression of catalase, glutathione peroxidase, and superoxide dismutase. Survival and tumor incidence were not influenced significantly by dietary supplementation with FO in place of CO. Taken together, our studies suggest that moderate restriction of energy intake significantly inhibited the development of mammary tumors and altered expression of cytokines, oncogenes, and free-radical scavenging enzymes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A gene encoding a fusion protein consisting of Escherichia coli iron superoxide dismutase (FeSOD) with the mitochondrial targeting presequence of yeast manganese superoxide dismutase (MnSOD) was cloned and expressed in E. coli and in Saccharomyces cerevisiae DL1Mn- yeast cells deficient in MnSOD. In the yeast cells the fusion protein was imported into the mitochondrial matrix. However, the presequence was not cleaved. In a control set of experiments, the E. coli FeSOD gene without the yeast MnSOD leader sequence was also cloned and expressed in S. cerevisiae DL1Mn- cells. In this case the FeSOD was located in the cytosol and was not imported into the mitochondrial matrix. E. coli FeSOD, with and without the yeast MnSOD presequence, proved to be active in yeast, but, whereas the FeSOD targeted to the mitochondria of yeast cells deficient in MnSOD protected the cells from the toxic effects of oxidative stress, FeSOD without the yeast MnSOD presequence did not protect the yeast cells deficient in MnSOD against oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the detection of endogenous intracellular glutathionyl (GS.) radicals in the intact neuroblastoma cell line NCB-20 under oxidative stress. Spin-trapping and electron paramagnetic resonance (EPR) spectroscopic methods were used for monitoring the radicals. The cells incubated with the spin trap 5,5-dimethyl-1-pyrroline 1-oxide (DMPO) were challenged with H2O2 generated by the enzymic reaction of glucose/glucose oxidase. These cells exhibit the EPR spectrum of the GS. radical adduct of DMPO (DMPO-.SG) without exogenous reduced glutathione (GSH). The identity of this radical adduct was confirmed by observing hyperfine coupling constants identical to previously reported values in in vitro studies, which utilized known enzymic reactions, such as horseradish peroxidase and Cu/Zn superoxide dismutase, with GSH and H2O2 as substrates. The formation of the GS. radicals required viable cells and continuous biosynthesis of GSH. No significant effect on the resonance amplitude by the addition of a membrane-impermeable paramagnetic broadening agent indicated that these radicals were located inside the intact cell. N-Acetyl-L-cysteine (NAC)-treated cells produced NAC-derived free radicals (NAC.) in place of GS. radicals. The time course studies showed that DMPO-.SG formation exhibited a large increase in its concentration after a lag period, whereas DMPO-NAC. formation from NAC-treated cells did not show this sudden increase. These results were discussed in terms of the limit of antioxidant enzyme defenses in cells and the potential role of the GS. radical burst in activation of the transcription nuclear factor NF-kappa B in response to oxidative stress.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: