981 resultados para Superheated droplets detector
Resumo:
The neutrino mass ordering and the leptonic CP violation phase are key parameters of the three-neutrino flavour mixing still to be determined. Measuring these parameters is the main goal of DUNE, a next generation Long Baseline neutrino experiment under construction in the United States. DUNE will feature a Near and a Far Detector site. An important component of the Near detector complex is the SAND apparatus, which will include GRAIN, a novel liquid Argon detector that aims at imaging neutrino interactions using scintillation light. For this purpose, an innovative optical readout system based on Coded Aperture Masks is under study. This thesis work is aimed at a first quantitative assessment of a 3D neutrino event reconstruction algorithm for GRAIN. The processing procedure is optimized and the reconstruction performance is evaluated. Promising results are obtained.
Resumo:
L’Electron Ion Collider (EIC) è un futuro acceleratore di particelle che ha l’obiettivo di approfondire le nostre conoscenze riguardo l’interazione forte, una delle quattro interazioni fondamentali della natura, attraverso collisioni di elettroni su nuclei e protoni. L’infrastruttura del futuro detector comprende un sistema d’identificazione basato sull’emissione di luce Cherenkov, un fenomeno che permette di risalire alla massa delle particelle. Una delle configurazioni prese in considerazione per questo sistema è il dual-radiator RICH, basato sulla presenza di due radiatori all’esterno dei quali si trovano dei fotorivelatori. Un’opzione per questi sensori sono i fotorivelatori al silicio SiPM, oggetto di questo lavoro di tesi. L’obiettivo dell’attività è lo studio di un set-up per la caratterizzazione della risposta di sensori SiPM a basse temperature, illuminati attraverso un LED. Dopo un’analisi preliminare per determinare le condizioni di lavoro, si è trovato che la misura è stabile entro un errore del 3.5%.
Resumo:
DUNE (Deep Underground Neutrino Experiment) è un esperimento internazionale attualmente in costruzione al laboratorio Fermilab in Illinois, Stati Uniti. Il suo scopo sarà quello di studiare alcuni dei fenomeni e quesiti aperti che riguardano i neutrini: particelle debolmente interagenti facenti parte del Modello Standard. In particolare DUNE intende studiare il fenomeno dell'oscillazione di sapore dei neutrini, osservare neutrini provenienti da supernove e stelle di neutroni per studiarne la formazione e ricercare l'eventuale decadimento dei protoni. L'esperimento sarà formato da due siti sperimentali distanti circa 1300 km tra loro: il Near Detector situato a Fermilab ed il Far Detector, situato al Sanford Underground Research Facility (SURF) in South Dakota. Questa tesi è rivolta in particolare al sistema di fotorivelazione del Far Detector, che utilizza fotomoltiplicatori al silicio (Silicon Photomultipliers, o SiPM). Questi dispositivi dovranno funzionare in condizioni criogeniche in argon liquido, perciò è stata avviata un'intensiva campagna di test volta alla caratterizzazione e validazione dei sensori che saranno montati nell'apparato. La sezione INFN di Bologna è coinvolta in questa campagna e dovrà testare una parte dei SiPM destinati all'impiego in DUNE. A tale scopo è stato realizzato, nei laboratori INFN, un sistema per il test di tali dispositivi in criogenia su larga scala. L'attività di tesi ha previsto la caratterizzazione di diversi SiPM sia a temperatura ambiente sia in criogenia e l'analisi delle distribuzioni statistiche dei parametri di diversi campioni di SiPM.
Resumo:
The High Energy Rapid Modular Ensemble of Satellites (HERMES) is a new mission concept involving the development of a constellation of six CubeSats in low Earth orbit with new miniaturized instruments that host a hybrid Silicon Drift Detector/GAGG:Ce based system for X-ray and γ-ray detection, aiming to monitor high-energy cosmic transients, such as Gamma Ray Bursts and the electromagnetic counterparts of gravitational wave events. The HERMES constellation will also operate together with the Australian-Italian SpIRIT mission, which will house a HERMES-like detector. The HERMES pathfinder mini-constellation, consisting of six satellites plus SpIRIT, is likely to be launched in 2023. The HERMES detectors are based on the heritage of the Italian ReDSoX collaboration, with joint design and production by INFN-Trieste and Fondazione Bruno Kessler, and the involvement of several Italian research institutes and universities. An application-specific, low-noise, low-power integrated circuit (ASIC) called LYRA was conceived and designed for the HERMES readout electronics. My thesis project focuses on the ground calibrations of the first HERMES and SpIRIT flight detectors, with a performance assessment and characterization of the detectors. The first part of this work addresses measurements and experimental tests on laboratory prototypes of the HERMES detectors and their front-end electronics, while the second part is based on the design of the experimental setup for flight detector calibrations and related functional tests for data acquisition, as well as the development of the calibration software. In more detail, the calibration parameters (such as the gain of each detector channel) are determined using measurements with radioactive sources, performed at different operating temperatures between -20°C and +20°C by placing the detector in a suitable climate chamber. The final part of the thesis involves the analysis of the calibration data and a discussion of the results.
Resumo:
Il lavoro presentato in questa tesi analizza il comportamento elettrico di prototipi di sensori Low-Gain Avalanche Detector (LGAD) ultrasottili. L'analisi consiste in una verifica sperimentale delle caratteristiche attese di questi sensori, che sono stati selezionati come possibili candidati per la realizzazione del sistema di Time-Of-Flight (TOF) nell'esperimento ALICE 3. Concepito come evoluzione dell'esperimento ALICE attualmente in funzione al CERN, ALICE 3 rappresenta l'archetipo di una nuova generazione di esperimenti nella fisica delle collisioni di ioni pesanti, ed è previsto iniziare la propria attività di presa dati per LHC Run 5 nel 2032. Sono stati presi in considerazione 22 campioni di LGAD, di cui 11 provenienti dal wafer di produzione 5 (spessore 25 um) e gli altri 11 dal wafer 6 (spessore 35 um). In entrambi i casi, di questi 11 sensori, 6 sono campioni in configurazione LGAD-PIN e 5 sono matrici. Tutti e 22 i campioni sono stati sottoposti a misure di corrente in funzione del voltaggio, mentre solo quelli appartenenti al wafer 5 anche a misure di capacità. L'obiettivo è quello di misurare la caratteristica IV e CV per ognuno dei campioni e da queste estrarre, rispettivamente, tensione di breakdown e profilo di doping.
Resumo:
The GRAIN detector is part of the SAND Near Detector of the DUNE neutrino experiment. A new imaging technique involving the collection of the scintillation light will be used in order to reconstruct images of particle tracks in the GRAIN detector. Silicon photomultiplier (SiPM) matrices will be used as photosensors for collecting the scintillation light emitted at 127 nm by liquid argon. The readout of SiPM matrices inside the liquid argon requires the use of a multi-channel mixed-signal ASIC, while the back-end electronics will be implemented in FPGAs outside the cryogenic environment. The ALCOR (A Low-power Circuit for Optical sensor Readout) ASIC, developed by Torino division of INFN, is under study, since it is optimized to readout SiPMs at cryogenic temperatures. I took part in the realization of a demonstrator of the imaging system, which consists of a SiPM matrix connected to a custom circuit board, on which an ALCOR ASIC is mounted. The board communicates with an FPGA. The first step of the present project that I have accomplished was the development of an emulator for the ALCOR ASIC. This emulator allowed me to verify the correct functioning of the initial firmware before the real ASIC itself was available. I programmed the emulator using VHDL and I also developed test benches in order to test its correct working. Furthermore, I developed portions of the DAQ software, which I used for the acquisition of data and the slow control of the ASICs. In addition, I made some parts of the DAQ firmware for the FPGAs. Finally, I tested the complete SiPMs readout system at both room and cryogenic temperature in order to ensure its full functionality.
Resumo:
Rapidity-odd directed flow (v1) measurements for charged pions, protons, and antiprotons near midrapidity (y=0) are reported in sNN=7.7, 11.5, 19.6, 27, 39, 62.4, and 200 GeV Au+Au collisions as recorded by the STAR detector at the Relativistic Heavy Ion Collider. At intermediate impact parameters, the proton and net-proton slope parameter dv1/dy|y=0 shows a minimum between 11.5 and 19.6 GeV. In addition, the net-proton dv1/dy|y=0 changes sign twice between 7.7 and 39 GeV. The proton and net-proton results qualitatively resemble predictions of a hydrodynamic model with a first-order phase transition from hadronic matter to deconfined matter, and differ from hadronic transport calculations.
Resumo:
Bacterial strains and metagenomic clones, both obtained from petroleum reservoirs, were evaluated for petroleum degradation abilities either individually or in pools using seawater microcosms for 21 days. Gas Chromatography-Flame Ionization Detector (GC-FID) and Gas Chromatography-Mass Spectrometry (GC-MS) analyses were carried out to evaluate crude oil degradation. The results showed that metagenomic clones 1A and 2B were able to biodegrade n-alkanes (C14 to C33) and isoprenoids (phytane and pristane), with rates ranging from 31% to 47%, respectively. The bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 showed higher rates reaching 99% after 21 days. The metagenomic clone pool biodegraded these compounds at rates ranging from 11% to 45%. Regarding aromatic compound biodegradation, metagenomic clones 2B and 10A were able to biodegrade up to 94% of phenanthrene and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 55% to 70% after 21 days, while the bacteria Dietzia maris CBMAI 705 and Micrococcus sp. CBMAI 636 were able to biodegrade 63% and up to 99% of phenanthrene, respectively, and methylphenanthrenes (3-MP, 2-MP, 9-MP and 1-MP) with rates ranging from 23% to 99% after 21 days. In this work, isolated strains as well as metagenomic clones were capable of degrading several petroleum compounds, revealing an innovative strategy and a great potential for further biotechnological and bioremediation applications.
Resumo:
In this work, the energy response functions of a CdTe detector were obtained by Monte Carlo (MC) simulation in the energy range from 5 to 160keV, using the PENELOPE code. In the response calculations the carrier transport features and the detector resolution were included. The computed energy response function was validated through comparison with experimental results obtained with (241)Am and (152)Eu sources. In order to investigate the influence of the correction by the detector response at diagnostic energy range, x-ray spectra were measured using a CdTe detector (model XR-100T, Amptek), and then corrected by the energy response of the detector using the stripping procedure. Results showed that the CdTe exhibits good energy response at low energies (below 40keV), showing only small distortions on the measured spectra. For energies below about 80keV, the contribution of the escape of Cd- and Te-K x-rays produce significant distortions on the measured x-ray spectra. For higher energies, the most important correction is the detector efficiency and the carrier trapping effects. The results showed that, after correction by the energy response, the measured spectra are in good agreement with those provided by a theoretical model of the literature. Finally, our results showed that the detailed knowledge of the response function and a proper correction procedure are fundamental for achieving more accurate spectra from which quality parameters (i.e., half-value layer and homogeneity coefficient) can be determined.
Resumo:
The aim of this study was to estimate barite mortar attenuation curves using X-ray spectra weighted by a workload distribution. A semi-empirical model was used for the evaluation of transmission properties of this material. Since ambient dose equivalent, H(⁎)(10), is the radiation quantity adopted by IAEA for dose assessment, the variation of the H(⁎)(10) as a function of barite mortar thickness was calculated using primary experimental spectra. A CdTe detector was used for the measurement of these spectra. The resulting spectra were adopted for estimating the optimized thickness of protective barrier needed for shielding an area in an X-ray imaging facility.
Resumo:
Primary X-ray spectra were measured in the range of 80-150kV in order to validate a computer program based on a semiempirical model. The ratio between the characteristic and total air Kerma was considered to compare computed results and experimental data. Results show that the experimental spectra have higher first HVL and mean energy than the calculated ones. The ratios between the characteristic and total air Kerma for calculated spectra are in good agreement with experimental results for all filtrations used.
Resumo:
Several biotechnological processes can show an undesirable formation of emulsions making difficult phase separation and product recovery. The breakup of oil-in-water emulsions stabilized by yeast was studied using different physical and chemical methods. These emulsions were composed by deionized water, hexadecane and commercial yeast (Saccharomyces cerevisiae). The stability of the emulsions was evaluated varying the yeast concentration from 7.47 to 22.11% (w/w) and the phases obtained after gravity separation were evaluated on chemical composition, droplet size distribution, rheological behavior and optical microscopy. The cream phase showed kinetic stability attributed to mechanisms as electrostatic repulsion between the droplets, a possible Pickering-type stabilization and the viscoelastic properties of the concentrated emulsion. Oil recovery from cream phase was performed using gravity separation, centrifugation, heating and addition of demulsifier agents (alcohols and magnetic nanoparticles). Long centrifugation time and high centrifugal forces (2h/150,000×g) were necessary to obtain a complete oil recovery. The heat treatment (60°C) was not enough to promote a satisfactory oil separation. Addition of alcohols followed by centrifugation enhanced oil recovery: butanol addition allowed almost complete phase separation of the emulsion while ethanol addition resulted in 84% of oil recovery. Implementation of this method, however, would require additional steps for solvent separation. Addition of charged magnetic nanoparticles was effective by interacting electrostatically with the interface, resulting in emulsion destabilization under a magnetic field. This method reached almost 96% of oil recovery and it was potentially advantageous since no additional steps might be necessary for further purifying the recovered oil.
Resumo:
Different brands and batches of brazilian regular and instant coffee were purchased in supermarkets of Campinas? city and analysed for caffeine content. The method used involved extraction with boiling water, clarification with saturated basic acetate and determination by high performance liquid cromatography. Analysis was carried out using a Model 6000 A solvent delivery system (Waters associates), and a Model 7125 sample injector system (Reodyne, Inc.) with a 5µl sample loop. The system was also equipped with a Waters Model M440 absorbance detector set at 254 nm. A Merck ODS 5µm column (15 cm x 4.6 mm i.d.) was used to separate the caffeine. The mobile phase was methanol:water (25:75, v/v). The caffeine content varied for different brands and types of coffee and according to the beverage preparation technique. Values in the range of 0.43 to 0.85 mg/ml and 0.61 to 0.82 mg/ml were determined in regular and instant coffee, respectively.
Resumo:
Polycyclic aromatic hydrocarbons (PAHs) are a group of compounds that have been the subject of much concern due to their toxic potential. In this study, margarine?s, vegetable cream and mayonnaise available on the Brazilian market were analyzed for pyrene, chrysene, benzo(a)pyrene, benzo(b)fluoranthene and dibenzo(a,h)anthracene. The analytical methodology involved liquid-liquid extraction, clean-up on silica gel column and determination by high performance liquid chromatography using fluorescence detector. Variable levels of contamination were found within differents brands of the same product and within differents batches of the same brand. The total PAH content was in the range of 4.1 to 7.1mug/kg in vegetable cream, 1.7 to 3.9mug/kg in margarine and 1.0 to 21.7mug/kg in mayonnaise. In general the products which according to the label contain corn oil showed the highest levels of contamination. Based on these results and on the importance of fat, oils and derived products for the intake of PAHs, it is recommended that producers of margarine, vegetable creams and mayonnaise start to control the contamination of the vegetable oils used in the elaboration of these products, in order to reduce the exposure of consumers to excessive amounts of potentially carcinogenic compounds.
Resumo:
Universidade Estadual de Campinas. Faculdade de Educação Física