958 resultados para Superconducting transition temperature
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)
Resumo:
The physical properties of novel thermoplastic random copolyesters [-(CH2)(n)-COO-/-(CH2)(n)-COO-](x) made of long (n=12) and medium (n=8) chain length -hydroxyfatty esters [HO-(CH2)(n)-COOCH3] derived from bio-based vegetable oil feedstock are described. Poly(-hydroxy tridecanoate/-hydroxy nonanoate) P(-Me13-/-Me9-) random copolyesters (M-n=11,000-18,500 g/mol) with varying molar ratios were examined by TGA, DSC, DMA and tensile analysis, and WAXD. For the whole range of P(-Me13-/-Me9-) compositions, the WAXD data indicated an orthorhombic polyethylene-like crystal packing. Their melting characteristics, determined by DSC, varied with composition suggesting an isomorphic cocrystallization behavior. TGA of the P(-Me13-/-Me9-)s indicated improved thermal stability determined by their molar compositions. The glass transition temperature, investigated by DMA, was also found to vary with composition. The crystallinities of P(-Me13-/-Me9-)s however, were unaffected by the composition. The stiffness (Young's modulus) of these materials was found to be related to their degrees of crystallinity. (c) 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014, 131, 40492.
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
Pós-graduação em Engenharia Mecânica - FEG
Resumo:
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)
Resumo:
The physical properties of three vegetable oil derived medium and long chain poly(-hydroxy fatty ester)s (P(Me--OHFA)s), namely poly(-hydroxynonanoate) [P(Me--OHC9)], poly(-hydroxytridecanoate) [P(Me--OHC13)] and poly(-hydroxyoctadecanoate) [P(Me--OHC18)] (n = 8, 12 and 17, respectively), of the [-(CH2)(n)-COO-](x) polyester homologous series are presented. The effect of M-n (M-n 10-40 kg mol(-1)) and n on the crystal structure and thermal and mechanical properties of the P(Me--OHFA)s were investigated by wide-angle X-ray diffraction (WAXD), TGA, DSC, dynamic mechanical analysis (DMA) and tensile analysis and are discussed in the context of the [-(CH2)(n)-COO-](x) polyester homologous series, contrasted with linear polyethylene (PE). For all P(Me--OHFA)s the WAXD data indicated an orthorhombic crystal phase reminiscent of linear PE with crystallinity (X-c = 50%-80%) depending strongly on M-n. The glass transition temperature and Young's modulus for P(Me--OHFA)s increased with X-c. The DSC, DMA and TGA studies for P(Me--OHFA)s (n = 8, 12 and 17) indicated strong correlations between the melting, glass transition and thermal degradation behavior and n. The established predictive structure relationships can be used for the custom engineering of polyester materials suitable for specialty and commodity applications. (c) 2014 Society of Chemical Industry
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The increasing demand for electrical energy and the difficulties involved in installing new transmission lines presents a global challenge. Transmission line cables need to conduct more current, which creates the problem of excessive cable sag and limits the distance between towers. Therefore, it is necessary to develop new cables that have low thermal expansion coefficients, low densities, and high resistance to mechanical stress and corrosion. Continuous fiber-reinforced polymers are now widely used in many industries, including electrical utilities, and provide properties that are superior to those of traditional ACSR (aluminum conductor steel reinforced) cables. Although composite core cables show good performance in terms of corrosion, the contact of carbon fibers with aluminum promotes galvanic corrosion, which compromises mechanical performance. In this work, three different fiber coatings were tested (phenol formaldehyde resin, epoxy-based resin, and epoxy resin with polyester braiding), with measurements of the galvanic current. The use of epoxy resin combined with polyester braiding provided the best inhibition of galvanic corrosion. Investigation of thermal stability revealed that use of phenol formaldehyde resin resulted in a higher glass transition temperature. On the other hand, a post-cure process applied to epoxy-based resin enabled it to achieve glass transition temperatures of up to 200 degrees C. (C) 2014 Elsevier Ltd. All rights reserved.
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)