962 resultados para Sugar cane - Biological control
Resumo:
Net form of net blotch (NFNB), caused by Pyrenophora teres Drechs. f. teres Smedeg., is a serious disease problem for the barley industry in Australia and other parts of the world. Three doubled haploid barley populations, Alexis/Sloop, WI2875-1/Alexis, and Arapiles/Franklin, were used to identify genes conferring adult plant resistance to NFNB in field trials. Quantitative trait loci (QTLs) identified were specific for adult plant resistance because seedlings of the parental lines were susceptible to the NFNB isolates used in this study. QTLs were identified on chromosomes 2H, 3H, 4H, and 7H in both the Alexis/Sloop and WI2875-1/Alexis populations and on chromosomes 1H, 2H, and 7H in the Arapiles/Franklin population. Using QTLNetwork, epistatic interactions were identified between loci on chromosomes 3H and 6H in the Alexis/Sloop population, between 2H and 4H in the WI2875-1/Alexis population, and between 5H and 7H in the Arapiles/Franklin population. Comparisons with earlier studies of NFNB resistance indicate the pathotype-dependent nature of many resistance QTLs and the importance of establishing an international system of pathotype nomenclature and differential testing.
Resumo:
Parthenium is a weed of global significance affecting many countries in Asia, Africa, and the Pacific Islands. Parthenium causes severe human and animal health problems, agricultural losses as well as serious environmental problems. Management options for parthenium include chemical, physical, legislative, fire, mycoherbicides, agronomic practices, competitive displacement and classical biological control. The ability of parthenium to grow in a wide range of habitats, its persistent seed bank, and its allelopathic potential make its management difficult. No single management option would be adequate to manage parthenium across all habitats, and there is a need to integrate various management options (e.g. grazing management, competitive displacement, cultural practices) with classical biological control as a core management option.
Resumo:
Parthenium is a serious problem in several tropical and sub-tropical areas around the world and particularly an emerging problem in southern Africa. It is a Weed of National Significance in Australia. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and biological control of the weed worldwide. Queensland has led attempts to achieve biological control of parthenium since it first began foreign exploration in 1977. Since then nine insects and two rusts have been released in Queensland. Some of these have since been, or will be, used by other countries. The program has brought significant benefits to Queensland through an increase in grass biomass in some areas. Instances of non-target attack by one agent, particularly in India, are discussed with the conclusion that the effects were ultimately negligible and possibly due to parthenium pollen lodging on the leaves of non-target plants. The insects introduced for parthenium have also given a measure of control for the very closely related weeds, ragweed and Noogoora burr. The paper draws a conclusion that local climatic conditions are very important when considering whether a successful agent in one country will be useful in a second country.
Resumo:
Chromolaena, or Siam weed, is a serious problem in several tropical and sub-tropical areas around the world. In our own region, it is a serious weed in New Guinea, East Timor and Indonesia and is also under an eradication regime in North Queensland. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and control of the weed. Biological control has been a major multinational initiative against this weed in recent years and these efforts are described in some detail. Interestingly agents have not been universally effective because of weed biotype differences and climate. Considerable success has been achieved in New Guinea, principally with the tephritid fly Cecidocares connex and by the efforts of Michael Day, Rachel McFadyen and Graham Donnelly from Alan Fletcher Research Station.
Resumo:
The status of biocontrol of Chromolaena odorata, a weed of significant agricultural importance in Papua New Guinea, is assessed. Chromolaena is confirmed present in 391 sites in 12 of the 20 provinces of PNG. A collaborative project on the biocontrol of chromolaena involving the PNG National Agricultural Research Institute and the Queensland Department of Primary Industries and Fisheries began in1998, with funding from ACIAR. Three agents, the moth Pareuchaetes pseudoinsulata, which has established only in Morobe Province, the stem-galling fly Cecidochares connexa, which has established in all 12 provinces and the leaf mining fly Calycomyza eupatorivora, which is currently being monitored for establishment, have been introduced. Cecidochares connexa has been the most effective of the agents so far and it has spread more than 100 km in five years from some release sites. Preliminary field data have shown that the numbers of galls per plant have increased, coupled with a decrease in plant height and percent plant cover. In parts of New Ireland and Sandaun provinces, C. connexa has controlled chromolaena, resulting in the regeneration of natural vegetation. In addition, some food gardens have been re-established where chromolaena had once taken over. Consequently, food production has increased and income generated from selling agricultural produce has increased two fold. There is also less time spent in clearing chromolaena from food gardens and plantations. The effectiveness of C. connexa has brought relief to many communities, which are helping in the distribution of the gall fly to other areas affected by chromolaena.
Resumo:
Dhileepan, Raghu and colleagues recently published their paper 'Worldwide phylogeography of the globally invasive plant: Jatropha gossypiifolia' in Proceedings of the 16th Australian Weeds Conference. They used chloroplast microsatellites to establish patterns of phylogeographic structure in the native and introduced range of Jatropha gossypiifolia, and to determine the origin(s) of introductions and the level of genetic diversity present in native and introduced populations. J. gossypiifolia exhibited limited phylogeographic structure in its native range which was best explained by contemporary movement associated with the ornamental plant trade. Multiple introductions from diverse source locations and no reduction in genetic diversity was found in the introduced range which includes Australia, Africa and Asia. These results have implications for our current biocontrol project.
Resumo:
Fiji leaf gall, caused the Fiji disease virus (genus Fijivirus, family Reoviridae, FDV), is a serious disease of sugarcane, Saccharum officinarum L., in Australia and several other Asia-Pacific countries. In Australia FDV is transmitted only by the planthopper Perkinsiella saccharicida Kirkaldy (Hemiptera: Delphacidae), in a propagative manner. Successful transmission of FDV by single planthoppers confined to individual virus free plants is highly variable, even under controlled conditions. The research reported here addresses two possible sources of this variation: 1) gender, wing form, and life stage of the planthopper; and 2) genotype of the source plant. The acquisition of FDV by macropterous males, macropterous females, brachypterous females, and nymphs of P. saccharicida from infected plants was investigated using reverse transcription-polymerase chain reaction to diagnose FDV infection in the vector. The proportion of individuals infected with FDV was not statistically related to life stage, gender, or adult wing form of the vector. The acquisition of FDV by P. saccharicida from four cultivars of sugarcane was compared to assess the influence of plant genotype on acquisition. Those planthopper populations reared on diseased 'NCo310' plants had twice as many infected planthoppers as those reared on 'Q110', 'WD1', and 'WD2'. Therefore, variation in FDV acquisition in this system is not the result of variation in the gender, wing form and life stage of the P. saccharicida vectors. The cultivar used as the source plant to rear vector populations does affect the proportion of infected planthoppers in a population.
Resumo:
The enemy release hypothesis predicts that native herbivores will either prefer or cause more damage to native than introduced plant species. We tested this using preference and performance experiments in the laboratory and surveys of leaf damage caused by the magpie moth Nyctemera amica on a co-occuring native and introduced species of fireweed (Senecio) in eastern Australia. In the laboratory, ovipositing females and feeding larvae preferred the native S. pinnatifolius over the introduced S. madagascariensis. Larvae performed equally well on foliage of S. pinnatifolius and S. madagascariensis: pupal weights did not differ between insects reared on the two species, but growth rates were significantly faster on S. pinnatifolius. In the field, foliage damage was significantly greater on native S. pinnatifolius than introduced S. madagascariensis. These results support the enemy release hypothesis, and suggest that the failure of native consumers to switch to introduced species contributes to their invasive success. Both plant species experienced reduced, rather than increased, levels of herbivory when growing in mixed populations, as opposed to pure stands in the field; thus, there was no evidence that apparent competition occurred.
Resumo:
The promotion of controlled traffic (matching wheel and row spacing) in the Australian sugar industry is necessitating a widening of row spacing beyond the standard 1.5 m. As all cultivars grown in the Australian industry have been selected under the standard row spacing there are concerns that at least some cultivars may not be suitable for wider rows. To address this issue, experiments were established in northern and southern Queensland in which cultivars, with different growth characteristics, recommended for each region, were grown under a range of different row configurations. In the northern Queensland experiment at Gordonvale, cultivars Q187((sic)), Q200((sic)), Q201((sic)), and Q218((sic)) were grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), and 2.3-m dual rows (80 cm between duals). In the southern Queensland experiment at Farnsfield, cvv. Q138, Q205((sic)), Q222((sic)) and Q188((sic)) were also grown in 1.5-m single rows, 1.8-m single rows, 1.8-m dual rows (50 cm between duals), while 1.8-m-wide throat planted single row and 2.0-m dual row (80 cm between duals) configurations were also included. There was no difference in yield between the different row configurations at Farnsfield but there was a significant row configuration x cultivar interaction at Gordonvale due to good yields in 1.8-m single and dual rows with Q201((sic)) and poor yields with Q200((sic)) at the same row spacings. There was no significant difference between the two cultivars in 1.5-m single and 2.3-m dual rows. The experiments once again demonstrated the compensatory capacity that exists in sugarcane to manipulate stalk number and individual stalk weight as a means of producing similar yields across a range of row configurations and planting densities. There was evidence of different growth patterns between cultivars in response to different row configurations (viz. propensity to tiller, susceptibility to lodging, ability to compensate between stalk number and stalk weight), suggesting that there may be genetic differences in response to row configuration. It is argued that there is a need to evaluate potential cultivars under a wider range of row configurations than the standard 1.5-m single rows. Cultivars that perform well in row configurations ranging from 1.8 to 2.0 m are essential if the adverse effects of soil compaction are to be managed through the adoption of controlled traffic.
Resumo:
Controlled traffic (matching wheel and row spacing) is being promoted as a means to manage soil compaction in the Australian sugar industry. However, machinery limitations dictate that wider row spacings than the standard 1.5-m single row will need to be adopted to incorporate controlled traffic and many growers are reluctant to widen row spacing for fear of yield penalties. To address these concerns, contrasting row configuration and planting density combinations were investigated for their effect on cane and sugar yield in large-scale experiments in the Gordonvale, Tully, Ingham, Mackay, and Bingera (near Bundaberg) sugarcane-growing regions of Queensland, Australia. The results showed that sugarcane possesses a capacity to compensate for different row configurations and planting densities through variation in stalk number and individual stalk weight. Row configurations ranging from 1.5-m single rows (the current industry standard) to 1.8-m dual rows (50 cm between duals), 2.1-m dual (80 cm between duals) and triple ( 65 cm between triples) rows, and 2.3-m triple rows (65 cm between triples) produced similar yields. Four rows (50 cm apart) on a 2.1-m configuration (quad rows) produced lower yields largely due to crop lodging, while a 1.8-m single row configuration produced lower yields in the plant crop, probably due to inadequate resource availability (water stress/limited radiation interception). The results suggest that controlled traffic can be adopted in the Australian sugar industry by changing from a 1.5-m single row to 1.8-m dual row configuration without yield penalty. Further, the similar yields obtained with wider row configurations (2 m or greater with multiple rows) in these experiments emphasise the physiological and environmental plasticity that exists in sugarcane. Controlled traffic can be implemented with these wider row configurations (>2 m), although it will be necessary to carry out expensive modifications to the current harvester and haul-out equipment. There were indications from this research that not all cultivars were suited to configurations involving multiple rows. The results suggest that consideration be given to assessing clones with different growth habits under a range of row configurations to find the most suitable plant types for controlled traffic cropping systems.
Resumo:
Bemisia tabaci, biotype B, commonly known as the silverleaf whitefly (SLW) is an alien species that invaded Australia in the mid-90s. This paper reports on the invasion ecology of SLW and the factors that are likely to have contributed to the first outbreak of this major pest in an Australian cotton cropping system, population dynamics of SLW within whitefly-susceptible crop (cotton and cucurbit) and non-crop vegetation (sowthistle, Sonchus spp.) components of the cropping system were investigated over four consecutive growing seasons (September-June) 2001/02-2004/05 in the Emerald Irrigation Area (EIA) of Queensland, Australia. Based on fixed geo-referenced sampling sites, variation in spatial and temporal abundance of SLW within each system component was quantified to provide baseline data for the development of ecologically sustainable pest management strategies. Parasitism of large (3rd and 4th instars) SLW nymphs by native aphelinid wasps was quantified to determine the potential for natural control of SLW populations. Following the initial outbreak in 2001/02, SLW abundance declined and stabilised over the next three seasons. The population dynamics of SLW is characterised by inter-seasonal population cycling between the non-crop (weed) and cotton components of the EIA cropping system. Cotton was the largest sink for and source of SLW during the study period. Over-wintering populations dispersed from weed host plant sources to cotton in spring followed by a reverse dispersal in late summer and autumn to broad-leaved crops and weeds. A basic spatial source-sink analysis showed that SLW adult and nymph densities were higher in cotton fields that were closer to over-wintering weed sources throughout spring than in fields that were further away. Cucurbit fields were not significant sources of SLW and did not appear to contribute significantly to the regional population dynamics of the pest. Substantial parasitism of nymphal stages throughout the study period indicates that native parasitoid species and other natural enemies are important sources of SLW mortality in Australian cotton production systems. Weather conditions and use of broad-spectrum insecticides for pest control are implicated in the initial outbreak and on-going pest status of SLW in the region.
Resumo:
Lantana is a serious problem in several tropical and sub-tropical areas around the world. It is a Weed of National Significance in Australia where it costs the grazing industry alone over $104 million per annum. The chapter summarises current knowledge about the taxonomy, biology, distribution, ecology, impacts and biological control of the weed worldwide. Attempts to achieve biological control of lantana date back to 1902 making this weed one of our oldest targets. Although control has been achieved in some areas of the world, in many other areas control is still sub-optimum. Factors thought to contribute to the difficulty of achieving biocontrol include the plant's biology, the wide genetic variation associated with hundreds of varieties or biotypes and the wide range of climatic habitats associated with the weed. This chapter provides a good summary of the present day position.
Resumo:
Cat’s claw creeper, Macfadyena unguis-cati (L.) Gentry (Bignoniaceae) is a major environmental weed of riparian areas, rainforest communities and remnant natural vegetation in coastal Queensland and New South Wales, Australia. In densely infested areas, it smothers standing vegetation, including large trees, and causes canopy collapse. Quantitative data on the ecology of this invasive vine are generally lacking. The present study examines the underground tuber traits of M. unguis-cati and explores their links with aboveground parameters at five infested sites spanning both riparian and inland vegetation. Tubers were abundant in terms of density (~1000 per m2), although small in size and low in level of interconnectivity. M. unguis-cati also exhibits multiple stems per plant. Of all traits screened, the link between stand (stem density) and tuber density was the most significant and yielded a promising bivariate relationship for the purposes of estimation, prediction and management of what lies beneath the soil surface of a given M. unguis-cati infestation site. The study also suggests that new recruitment is primarily from seeds, not from vegetative propagation as previously thought. The results highlight the need for future biological-control efforts to focus on introducing specialist seed- and pod-feeding insects to reduce seed-output.
Resumo:
The value of CLIMEX models to inform biocontrol programs was assessed, including predicting the potential distribution of biocontrol agents and their subsequent population dynamics, using bioclimatic models for the weed Parkinsonia aculeata, two Lantana camara biocontrol agents, and five Mimosa pigra biocontrol agents. The results showed the contribution of data types to CLIMEX models and the capacity of these models to inform and improve the selection, release and post release evaluation of biocontrol agents. Foremost among these was the quality of spatial and temporal information as well as the extent to which overseas range data samples the species’ climatic envelope. Post hoc evaluation and refinement of these models requires improved long-term monitoring of introduced agents and their dynamics at well selected study sites. The authors described the findings of these case studies, highlighted their implications, and considered how to incorporate models effectively into biocontrol programs.