831 resultados para Substance misuse and dependence
Resumo:
The incorporation of melamine into food products is banned but its misuse has been widely reported in both animal feeds and food. The development of a rapid screening immunoassay for monitoring of the substance is an urgent requirement. Two haptens of melamine were synthesized by introducing spacer arms of different lengths and structures on the triazine ring of the analyte molecular structure. 6-Aminocaproic acid and 3-mercaptopropionic acid were reacted with 2-chloro-4,6-diamino-1,3,5-triazine (CAAT) to produce hapten 1[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylamino) hexanoic acid] and hapten 2[3-(4,6-diamino-1,6-dihydro-1,3,5-triazin-2-ylthio) propanoic acid]. respectively. The molecular structures of the two haptens were identified by I H nuclear magnetic resonance spectrometry, mass spectrometry and infrared spectrometry. An immunogen was prepared by coupling hapten 1 to bovine serum albumin (BSA). Two plate coating antigens were prepared by coupling both haptens to egg ovalbumin (OVA). A competitive indirect enzyme-linked immunosorbent assay (ciELISA) was developed to evaluate homogeneous and heterogeneous assay formats. The results showed that polyclonal antibodies with high titers were obtained, and the heterogeneous immunoassay format demonstrated a better performance with an IC50 of 70.6 ng mL(-1), a LOD of 2.6 ng mL(-1) and a LOQ of 7.6 ng mL(-1). Except for cyromazine, no obvious cross-reactivity to common compounds was found. The data showed that the hapten synthesis was successful and the resultant antisera could be used in an immunoassay for the rapid and sensitive detection of this banned chemical. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article applies the panel stationarity test with a break proposed by Hadri and Rao (2008) to examine whether 14 macroeconomic variables of OECD countries can be best represented as random walk or stationary fluctuations around a deterministic trend. In contrast to previous studies, based essentially on visual inspection of the break type or just applying the most general break model, we use a model selection procedure based on BIC. We do this for each time series so that heterogeneous break models are allowed for in the panel. Our results suggest, overwhelmingly, that if we account for a structural break, cross-sectional dependence and choose the break models to be congruent with the data, then the null of stationarity cannot be rejected for all the 14 macroeconomic variables examined in this article. This is in sharp contrast with the results obtained by Hurlin (2004), using the same data but a different methodology.
Resumo:
When the dominant mechanism for ion acceleration is the laser radiation pressure, the conversion efficiency of the laser energy into the energy of relativistic ions may be very high. Stability analysis of a thin plasma layer accelerated by the radiation pressure shows that Raleigh-Taylor instability may enhance plasma inhomogeneity. In the linear stage of instability, the plasma layer decays into separate bunches, which are accelerated by the radiation pressure similarly to clusters accelerated under the action of an electromagnetic wave. The energy and luminosity of an ion beam accelerated in the radiation-pressure-dominated regime are calculated.
Resumo:
Surface-enhanced Raman scattering (SERS) spectra from molecules adsorbed on the surface of vertically aligned gold nanorod arrays exhibit a variation in enhancement factor (EF) as a function of excitation wavelength that displays little correlation with the elastic optical properties of the surface. The key to understanding this lack of correlation and to obtaining agreement between experimental and calculated EF spectra lies with consideration of randomly distributed, sub-10 nm gaps between nanorods forming the substrate. Intense fields in these enhancement “hot spots” make a dominant contribution to the Raman scattering and have a very different spectral profile to that of the elastic optical response. Detailed modeling of the electric field enhancement at both excitation and scattering wavelengths was used to quantitatively predict both the spectral profile and the magnitude of the observed EF.
Resumo:
Measuring neuropeptides in biological tissues by radioimmunoassay requires efficient extraction that maintains their immunoreactivity. Many different methods for extraction have been described, but there is little information on optimal extraction methods for individual neuropeptides from human dental pulp tissue. The aim was therefore to identify an effective extraction procedure for three pulpal neuropeptides: substance P. neurokinin A and calcitonin gene-related peptide. Tissue was obtained from 20 pulps taken from teeth freshly extracted for orthodontic reasons. The pulp samples were divided into four equal groups and different extraction methods were used for each group. Boiling whole pulp in acetic acid gave the highest overall yield and, in addition, offered an easy and rapid means of pulp tissue processing. The use of protease inhibitors did not increase the recovery of the immunoreactive neuropeptides but did provide the best combination of maximal recoveries and minimal variability. These results should be useful for planning the extraction of these neuropeptides from human pulp tissue in future studies. (C) 1999 Elsevier Science Ltd. All rights reserved.
Resumo:
The initial kinetics of the oxidation of 4-chlorophenol, 4-CP, photocatalyzed by titania films and aqueous dispersions were studied as a function of oxygen partial pressure, P-O2, and incident light intensity, I. The reaction conditions were such that the kinetics were independent of [4-CP] but strongly dependent on PO2-a situation that allowed investigation of the less-often studied kinetics of oxygen reduction. The observed kinetics fit a pseudo-steady-state model in which the oxygen is Langmuir-adsorbed on the titania photocatalyst particles before being reduced by photogenerated electrons. The maximum rate of photocatalysis depends directly on I-beta, where, beta = 1 for films and 0.7 for dispersions of titania, indicating that the kinetics are dominated by the surface reactions of the photogenerated electrons and holes for the films and by direct recombination for the powder dispersions. Using the pseudo-first-order model, for both titania films and dispersions, the apparent Langmuir adsorption constant, K-LH, derived from a Langmuir-Hinshelwood analysis of the kinetics, appears to be largely independent of incident light intensity, unlike KLH for 4-CP Consequently, similar values are obtained for the Langmuir adsorption constant, K-ads, extracted from a pseudosteady-state analysis of the kinetics for oxygen on TiO2 dispersions and films in aqueous solution (i.e., ca. 0.0265 +/- 0.005 kPa(-1)), and for both films and dispersions, oxygen appears to be weakly adsorbed on TiO2 compared with 4-CP, at a rate that would take many minutes to reach equilibrium. The value of Kads for oxygen on titania particles dispersed in solution is ca. 4.7 times lower than that reported for the dark Langmuir adsorption isotherm; possible causes for this difference are discussed. (c) 2006 Elsevier Inc. All rights reserved.
Resumo:
The time dependence of the spatial coherence of the combined spectral lines at 23.2 and 23.6 nm from the Ge XXIII collisionally pumped soft-x-ray laser with a double-slab target is examined within a single nanosecond pulse by use of Young's interference fringes and a streak camera. High source intensity is linked with low spatial coherence and vice verse. Calculations of the source intensity, size, and position have also been made; these calculations refer to a single-slab source. Comparison between the observed and calculated intensities, and of the source sizes both calculated and derived from the Young's fringes by interpretation with a Gaussian model of source emission, show good agreement in general trends. (C) 1998 Optical Society of America [S0740-3224(98)01905-5].
Resumo:
We present a comprehensive study of the observational dependence of the mass-loss rate in stationary stellar winds of hot massive stars on the metal content of their atmospheres. The metal content of stars in the Magellanic Clouds is discussed, and a critical assessment is given of state-of-the-art mass-loss determinations of OB stars in these two satellite systems and the Milky-Way. Assuming a power-law dependence of mass loss on metal content,. M. Z(m), and adopting a theoretical relation between the terminal flow velocity and metal content, v(infinity). Z(0.13) (Leitherer et al. 1992, ApJ, 401, 596), we find m = 0.83 +/- 0.16 for non-clumped outflows from an analysis of the wind momentum luminosity relation (WLR) for stars more luminous than 105.2 L circle dot. Within the errors, this result is in agreement with the prediction m = 0.69 +/- 0.10 by Vink et al. (2001, A& A, 369, 574). Absolute empirical values for the mass loss, based on Ha and ultraviolet (UV) wind lines, are found to be a factor of two higher than predictions in this high luminosity regime. If this difference is attributed to inhomogeneities in the wind, and this clumping does not impact the predictions, this would imply that luminous O and early-B stars have clumping factors in their Ha and UV line forming regions of about a factor of four. For lower luminosity stars, the winds are so weak that their strengths can generally no longer be derived from optical spectral lines (essentially Ha) and one must currently rely on the analysis of UV lines. We confirm that in this low-luminosity domain the observed Galactic WLR is found to be much steeper than expected from theory (although the specific sample is rather small), leading to a discrepancy between UV mass-loss rates and the predictions by a factor 100 at luminosities of L similar to 10(4.75) L circle dot, the origin of which is unknown. We emphasize that even if the current mass-loss rates of hot luminous stars would turn out to be overestimated as a result of wind clumping, but the degree of clumping would be rather independent of metallicity, the scalings derived in this study are expected to remain correct.
Resumo:
Experiments have been carried out to investigate the polar distribution of atomic material ablated during the pulsed laser deposition of Cu in vacuum. Data were obtained as functions of focused laser spot size and power density. Thin films were deposited onto flat glass substrates and thickness profiles were transformed into polar atomic flux distributions of the form f(theta)=cos(n) theta. At constant focused laser power density on target, I=4.7+/-0.3X10(8) W/cm(2), polar distributions were found to broaden with a reduction in the focused laser spot size. The polar distribution exponent n varied from 15+/-2 to 7+/-1 for focused laser spot diameter variation from 2.5 to 1.4 mm, respectively, with the laser beam exhibiting a circular aspect on target. With the focused laser spot size held constant at phi=1.8 mm, polar distributions were observed to broaden with a reduction in the focused laser power density on target, with the associated polar distribution exponent n varying from 13+/-1.5 to 8+/-1 for focused laser power density variation from 8.3+/-0.3X10(8) to 2.2+/-0.1X10(8) W/cm(2) respectively. Data were compared with an analytical model available within the literature, which correctly predicts broadening of the polar distribution with a reduction in focused laser spot size and with a reduction in focused laser power density, although the experimentally observed magnitude was greater than that predicted in both cases. (C) 1996 American Institute of Physics.
Resumo:
We have a developed a multiple-radical model of the chemical modification reactions involving oxygen and thiols relevant to the interactions of ionizing radiations with DNA. The treatment is based on the Alper and Howard-Flanders equation but considers the case where more than one radical may be involved in the production of lesions in DNA. This model makes several predictions regarding the induction of double strand breaks in DNA by ionizing radiation and the role of sensitizers such as oxygen and protectors such as thiols which act at the chemical phase of radiation action via the involvement of free radicals. The model predicts a decreasing OER with increasing LET on the basis that as radical multiplicity increases so will the probability that, even under hypoxia, damage will be fixed and lead to lesion production. The model can be considered to provide an alternative hypothesis to those of 'interacting radicals' or of 'oxygen-in-the-track'.