987 resultados para Structure ordering
Resumo:
Homodimeric protein tryptophanyl tRNA synthetase (TrpRS) has a Rossmann fold domain and belongs to the 1c subclass of aminoacyl tRNA synthetases. This enzyme performs the function of acylating the cognate tRNA. This process involves a number of molecules (2 protein subunits, 2 tRNAs and 2 activated Trps) and thus it is difficult to follow the complex steps in this process. Structures of human TrpRS complexed with certain ligands are available. Based on structural and biochemical data, mechanism of activation of Trp has been speculated. However, no structure has yet been solved in the presence of both the tRNA(Trp) and the activated Trp (TrpAMP). In this study, we have modeled the structure of human TrpRS bound to the activated ligand and the cognate tRNA. In addition, we have performed molecular dynamics (MD) simulations on these models as well as other complexes to capture the dynamical process of ligand induced conformational changes. We have analyzed both the local and global changes in the protein conformation from the protein structure network (PSN) of MD snapshots, by a method which was recently developed in our laboratory in the context of the functionally monomeric protein, methionyl tRNA synthetase. From these investigations, we obtain important information such as the ligand induced correlation between different residues of this protein, asymmetric binding of the ligands to the two subunits of the protein as seen in the crystal structure analysis, and the path of communication between the anticodon region and the aminoacylation site. Here we are able to elucidate the role of dimer interface at a level of detail, which has not been captured so far.
Resumo:
The influence of electric field and temperature on power consumption of piezoelectric actuated integrated structure is studied by using a single degree of freedom mass-spring-damper system model coupled with a piezoactuator. The material lead zirconate titanate, is considered as it is capable of producing relatively high strains (e.g., 3000 mu epsilon). Actuators are often subject to high electric fields to increase the induced strain produced, resulting in field dependant piezoelectric coefficient d(31), dielectric coefficient epsilon(33) and dissipation factor delta. Piezostructures are also likely to be used across a wide range of temperatures in aerospace and undersea operations. Again, the piezoelectric properties can vary with temperature. Recent experimental studies by physics researchers have looked at the effect of high electric field and temperature on piezoelectric properties. These properties are used together with an impedance based power consumption model. Results show that including the nonlinear variation of dielectric permittivity and dissipation factor with electric field is important. Temperature dependence of the dielectric constant also should be considered.
Resumo:
The crystal structure of 5'-amino-5'-deoxyadenosine (5'-Am.dA) p-toluenesulfonate has been determined by X-ray crystallographic methods. It belongs to the orthorhombic space group P2(1)2(1)2(1) with a = 7.754(3)Angstrom, b = 8.065(1)Angstrom and c = 32.481(2)Angstrom. This nucleoside side shows a syn conformation about the glycosyl bond and C2'-endo-C3'-exo puckering for the ribose sugar. The orientation of N5' atom is gauche-trans about the exocyclic C4'-C5' bond. The amino nitrogen N5' forms a trifurcated hydrogen bond with N3, O9T and O4' atoms. Adenine bases form A.A.A triplets through hydrogen bonding between N6, N7 and N1 atoms of symmetry related nucleoside molecules.
Resumo:
Electron paramagnetic resonance (EPR) and magnetic properties of nanowires of Pr0.57Ca0.41Ba0.02MnO3 (PCBMO) are studied and compared with those of the bulk material. PCBMO nanowires with diameter of 80-90 nm and length of similar to 3.5 mu m were synthesized by a low reaction temperature hydrothermal method and the bulk sample was prepared following a solid-state reaction route. The samples were characterized by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. The bulk PCBMO manganite exhibits charge order at 230 K along with a ferromagnetic transition at 110 K. However, superconducting quantum interference device measurements on the PCBMO nanowires show a complete `melting' of charge ordering and a ferromagnetic transition at 115 K. This result is confirmed by the EPR intensity behavior as well. However, the EPR line width, which is reflective of the spin dynamics, shows a shallow minimum for nanowires at the temperature corresponding to the charge-ordering transition, i.e., 230 K. We interpret this result as an indication of the presence of charge-ordering fluctuations in the nanowires even though the static charge order is absent, thus heralding the occurrence of charge order in the bulk sample.
Resumo:
The European aspen (Populus tremula) is a keystone species for biodiversity in boreal forests. However, the future of aspen may be threatened, because large aspens have mostly been removed from managed forests, whereas regeneration and the long-term persistence of mature trees are subjects of concern in protected areas. Aspen is a pioneer tree, and it can reproduce both sexually by seed and asexually by root suckers. Through asexual reproduction aspen forms clones, groups of genetically identical trees (ramets). In my thesis, I have studied the structure of aspen populations in terms of number, size, clonal and demographic properties. Additionally, I have investigated the emergence and survival of seedlings as well as the seed quantity and quality in crosses between the European and hybrid aspen. To study the regeneration and population structure, mature aspens were recorded in old-growth and managed forests in eastern Finland based on a large-scale inventory (11 400 ha). In addition, small aspen trees were surveyed on sample plots. Clonal structure was investigated both by morphological characters and by DNA-based markers (microsatellites). Seedling emergence and survival was studied with two sowing experiments. With crosses between European and hybrid aspens we wanted to study whether elevated temperatures due to climate change would benefit the different crosses of European and hybrid aspen unequally and thus affect the gene flow between the two species. The average volumes of mature aspen were 5.3 m3/ha in continuous old-growth, and 0.8 m3/ha in managed forests. Results indicate also that large aspen trees in managed forests are a legacy of the past less intensively managed forest landscapes. Long-term persistence of aspen in protected areas can only be secured by restoration measures creating sufficiently large gaps for regeneration. More emphasis should be given to sparing aspens in thinnings and to retaining of mature aspens in regeneration cutting in managed forests. Aspen was found to be spatially aggregated in the landscape. This could be explained by site type, disturbance history and / or limitations in seed dispersal. Clonal structure does not explain the spatial aggregation, since average size of the clones was only 2.3 ramets, and most clones (70 %) consisted of just one ramet. The small size of the clones suggests that most of them are relatively young. Therefore, sexual reproduction may be more common than has previously been thought. Seedling emergence was most successful in mineral soil especially, when the site had been burned. Only few seedlings occurred on humus. Survival of the seedlings was low, and strongly dependent on moisture, but also on seedbed conditions. The seeds were found to maintain their germinability longer than has earlier been thought to be possible. Interspecific crosses produced more seeds with higher quality than intraspecific crosses. When temperature was elevated, germination of hybrid aspen seeds increased more than seeds from P. tremula x P. tremula crosses. These results suggest that hybrid aspen may have a significant genetic impact on the European aspen, and this effect may become strengthened by climate warming.
Resumo:
Nuclear magnetic resonance (NMR) spectroscopy provides us with many means to study biological macromolecules in solution. Proteins in particular are the most intriguing targets for NMR studies. Protein functions are usually ascribed to specific three-dimensional structures but more recently tails, long loops and non-structural polypeptides have also been shown to be biologically active. Examples include prions, -synuclein, amylin and the NEF HIV-protein. However, conformational preferences in coil-like molecules are difficult to study by traditional methods. Residual dipolar couplings (RDCs) have opened up new opportunities; however their analysis is not trivial. Here we show how to interpret RDCs from these weakly structured molecules. The most notable residual dipolar couplings arise from steric obstruction effects. In dilute liquid crystalline media as well as in anisotropic gels polypeptides encounter nematogens. The shape of a polypeptide conformation limits the encounter with the nematogen. The most elongated conformations may come closest whereas the most compact remain furthest away. As a result there is slightly more room in the solution for the extended than for the compact conformations. This conformation-dependent concentration effect leads to a bias in the measured data. The measured values are not arithmetic averages but essentially weighted averages over conformations. The overall effect can be calculated for random flight chains and simulated for more realistic molecular models. Earlier there was an implicit thought that weakly structured or non-structural molecules would not yield to any observable residual dipolar couplings. However, in the pioneering study by Shortle and Ackerman RDCs were clearly observed. We repeated the study for urea-denatured protein at high temperature and also observed indisputably RDCs. This was very convincing to us but we could not possibly accept the proposed reason for the non-zero RDCs, namely that there would be some residual structure left in the protein that to our understanding was fully denatured. We proceeded to gain understanding via simulations and elementary experiments. In measurements we used simple homopolymers with only two labelled residues and we simulated the data to learn more about the origin of RDCs. We realized that RDCs depend on the position of the residue as well as on the length of the polypeptide. Investigations resulted in a theoretical model for RDCs from coil-like molecules. Later we extended the studies by molecular dynamics. Somewhat surprisingly the effects are small for non-structured molecules whereas the bias may be large for a small compact protein. All in all the work gave clear and unambiguous results on how to interpret RDCs as structural and dynamic parameters of weakly structured proteins.
Resumo:
While many measures of viewpoint goodness have been proposed in computer graphics, none have been evaluated for ribbon representations of protein secondary structure. To fill this gap, we conducted a user study on Amazon’s Mechanical Turk platform, collecting human viewpoint preferences from 65 participants for 4 representative su- perfamilies of protein domains. In particular, we evaluated viewpoint entropy, which was previously shown to be a good predictor for human viewpoint preference of other, mostly non-abstract objects. In a second study, we asked 7 molecular biology experts to find the best viewpoint of the same protein domains and compared their choices with viewpoint entropy. Our results show that viewpoint entropy overall is a significant predictor of human viewpoint preference for ribbon representations of protein secondary structure. However, the accuracy is highly dependent on the complexity of the structure: while most participants agree on good viewpoints for small, non-globular structures with few secondary structure elements, viewpoint preference varies considerably for complex structures. Finally, experts tend to choose viewpoints of both low and high viewpoint entropy to emphasize different aspects of the respective structure.
Resumo:
The current explosion of DNA sequence information has generated increasing evidence for the claim that noncoding repetitive DNA sequences present within and around different genes could play an important role in genetic control processes, although the precise role and mechanism by which these sequences function are poorly understood. Several of the simple repetitive sequences which occur in a large number of loci throughout the human and other eukaryotic genomes satisfy the sequence criteria for forming non-B DNA structures in vitro. We have summarized some of the features of three different types of simple repeats that highlight the importance of repetitive DNA in the control of gene expression and chromatin organization. (i) (TG/CA)n repeats are widespread and conserved in many loci. These sequences are associated with nucleosomes of varying linker length and may play a role in chromatin organization. These Z-potential sequences can help absorb superhelical stress during transcription and aid in recombination. (ii) Human telomeric repeat (TTAGGG)n adopts a novel quadruplex structure and exhibits unusual chromatin organization. This unusual structural motif could explain chromosome pairing and stability. (iii) Intragenic amplification of (CTG)n/(CAG)n trinucleotide repeat, which is now known to be associated with several genetic disorders, could down-regulate gene expression in vivo. The overall implications of these findings vis-à-vis repetitive sequences in the genome are summarized.
Resumo:
Eight new open-framework inorganic-organic hybrid compounds based on indium have been synthesized employing hydrothermal methods. All of the compounds have InO6, C2O4, and HPO3/HPO4/SO4 units connected to form structures of different dimensionality Thus, the compounds have zero- (I), two- (II, III, IV, V, VII, and VIII), and three-dimensionally (VI) extended networks. The formation of the first zero-dimensional hybrid compound is noteworthy In addition, concomitant polymorphic structures have been observed in the present study. The molecular compound, I, was found to be reactive, and the transformation studies in the presence of a base (pyridine) give rise to the polymorphic structures of II and III, while the addition of an acid (H3PO3) gives rise to a new indium phosphite with a pillared layer structure (T1). Preliminary density functional theory calculations suggest that the stabilities of the polymorphs are different, with one of the forms (II) being preferred over the other, which is consistent with the observed experimental behavior. The oxalate units perform more than one role in the present structures. Thus, the oxalate units connect two In centers to satisfy the coordination requirements as well as to achieve charge balance in compounds II, IV, and VI. The terminal oxalate units observed in compounds I, IV, and V suggest the possibility of intermediate structures. Both in-plane and out-of-plane connectivity of the oxalate units were observed in compound VI. The 31 compounds have been characterized by powder X-ray diffraction, IR spectroscopy, thermogravimetric analysis, and P-31 NMR studies.
Resumo:
Contraction of an edge e merges its end points into a new single vertex, and each neighbor of one of the end points of e is a neighbor of the new vertex. An edge in a k-connected graph is contractible if its contraction does not result in a graph with lesser connectivity; otherwise the edge is called non-contractible. In this paper, we present results on the structure of contractible edges in k-trees and k-connected partial k-trees. Firstly, we show that an edge e in a k-tree is contractible if and only if e belongs to exactly one (k + 1) clique. We use this characterization to show that the graph formed by contractible edges is a 2-connected graph. We also show that there are at least |V(G)| + k - 2 contractible edges in a k-tree. Secondly, we show that if an edge e in a partial k-tree is contractible then e is contractible in any k-tree which contains the partial k-tree as an edge subgraph. We also construct a class of contraction critical 2k-connected partial 2k-trees.
Resumo:
Background: The members of cupin superfamily exhibit large variations in their sequences, functions, organization of domains, quaternary associations and the nature of bound metal ion, despite having a conserved beta-barrel structural scaffold. Here, an attempt has been made to understand structure-function relationships among the members of this diverse superfamily and identify the principles governing functional diversity. The cupin superfamily also contains proteins for which the structures are available through world-wide structural genomics initiatives but characterized as ``hypothetical''. We have explored the feasibility of obtaining clues to functions of such proteins by means of comparative analysis with cupins of known structure and function. Methodology/Principal Findings: A 3-D structure-based phylogenetic approach was undertaken. Interestingly, a dendrogram generated solely on the basis of structural dissimilarity measure at the level of domain folds was found to cluster functionally similar members. This clustering also reflects an independent evolution of the two domains in bicupins. Close examination of structural superposition of members across various functional clusters reveals structural variations in regions that not only form the active site pocket but are also involved in interaction with another domain in the same polypeptide or in the oligomer. Conclusions/Significance: Structure-based phylogeny of cupins can influence identification of functions of proteins of yet unknown function with cupin fold. This approach can be extended to other proteins with a common fold that show high evolutionary divergence. This approach is expected to have an influence on the function annotation in structural genomics initiatives.