983 resultados para Strontium Isotopes


Relevância:

20.00% 20.00%

Publicador:

Resumo:

New Mg/Ca, Sr/Ca, and published stable oxygen isotope and 87Sr/86Sr data obtained on ostracods from gravity cores located on the northwestern Black Sea slope were used to infer changes in the Black Sea hydrology and water chemistry for the period between 30 to 8 ka B.P. (calibrated radiocarbon years). The period prior to 16.5 ka B.P. was characterized by stable conditions in all records until a distinct drop in d18O values combined with a sharp increase in 87Sr/86Sr occurred between 16.5 and 14.8 ka B.P. This event is attributed to an increased runoff from the northern drainage area of the Black Sea between Heinrich Event 1 and the onset of the Bølling warm period. While the Mg/Ca and Sr/Ca records remained rather unaffected by this inflow; they show an abrupt rise with the onset of the Bølling/Allerød warm period. This rise was caused by calcite precipitation in the surface water, which led to a sudden increase of the Sr/Ca and Mg/Ca ratios of the Black Sea water. The stable oxygen isotopes also start to increase around 15 ka B.P., although in a more gradual manner, due to isotopically enriched meteoric precipitation. While Sr/Ca remains constant during the following interval of the Younger Dryas cold period, a decrease in the Mg/Ca ratio implies that the intermediate water masses of the Black Sea temporarily cooled by 1-2°C during the Younger Dryas. The 87Sr/86Sr values drop after the cessation of the water inflow at 15 ka B.P. to a lower level until the Younger Dryas, where they reach values similar to those observed during the Last Glacial Maximum. This might point to a potential outflow to the Mediterranean Sea via the Sea of Marmara during this period. The inflow of Mediterranean water started around 9.3 ka B.P., which is clearly detectable in the abruptly increasing Mg/Ca, Sr/Ca, and 87Sr/86Sr values. The accompanying increase in the d18O record is less pronounced and would fit to an inflow lasting ~100 a.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The glacial marine isotope stage 14 (MIS 14) appears in many climate records as an unusually warm glacial. During this period an almost monospecific, up to 1.5 m thick, laminated layer of the giant diatom Ethmodiscus rex has been deposited below the South Atlantic Subtropical Gyre. This oligotrophic region is today less favorable for diatom growth with sediments typically consisting of calcareous nannofossil oozes. We have reconstructed temperatures and the stable oxygen isotopic compositions of sea surface and thermocline water (d18Ow) from planktonic foraminiferal (Globigerinoides ruber and Globorotalia inflata) Mg/Ca and stable oxygen isotopes to test whether perturbations in surface ocean conditions contributed to the deposition of the diatom layer at ~530 kyr B.P. Temperatures and d18Ow values reconstructed from this diatom ooze interval are highly variable, with maxima similar to interglacial values. Since the area of the Ethmodiscus oozes resembles the region where Agulhas rings are present, we interpret these hydrographic changes to reflect the varying influence of warm and saline water of Indian Ocean origin that entered the Subtropical Gyre trapped in Agulhas rings. The formation of the Ethmodiscus oozes is associated with a period of maximum Agulhas leakage and a maximum frequency of Agulhas ring formation caused by a termination-type position of the Subtropical Front during the unusual warm MIS 14. The input of silica through the Agulhas rings enabled the shift in primary production from calcareous nannoplankton to diatoms, leading to the deposition of the massive diatom oozes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

14C concentrations, as well as 14C, hydrographic and nutrient data are reported for 5 hydrographic stations that form a transatlantic section near 40° N ("Meteor" cruise no. 23, 1971). Precision (for 14C ± 0.3 ? or better) and comparability with literature data are specified. A planned intercomparison with the US GEOSECS program within the Newfoundland Basin deep water failed because of variability of water characteristics. The observed 14C values decrease from about Delta 14C = + 80 ? at the surface to -70 ? at 2000 m depth. Deeper down, the values west of the Midatlantic Ridge remain similar, whereas those east of the ridge decrease further, to about - 110 ?. It is shown that bomb-14C is prominent down to about 1500 m depth. Beyond this depth the bomb 14C component is small and is negligible in the eastern basin below 2800 m. On the basis of the 14C-tritium correlation, the distribution of natural 14C below about 1500 m depth is derived from the observations. In the deep and bottom water east of the ridge the 14C-salinity relationship seemingly is non-linear. Contrary to expectation, the 14C concentration in the bottom water is not lower than found on an US GEOSECS station near 10° N. Apparently, lateral concentration differences in the Northeast Atlantic bottom water as well as nonlinearity of the 14C-salinity relationship at 40° N do not exceed 10 ? in Delta 14C.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

d11B and trace results obtained for a deep sea coral specimen Madrepora oculata collected from the Norwegian Sea (67°N, 9°E, 340 m) during the RV Polarstern ARK/II/Ia cruise (2007). Such coral specimen grew during the last four decades (1968-2007) and geochemical results highligh a seawater pH decrease with an order of magnitude in good agreement with an ocean acidification rate today known. This pH record is strongly impacted by inter-decadal change of ocean dynamic (NAO) and productivity. pHT calculation parameters (Hönisch et al., 2007): a=5; a=0.9804, d11B=39.5 PER MIL, Li/Mg temperature, salinity=35.1, pKB from Dickson (1990).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Kimmeridge Clay Formation (KCF) and its equivalents worldwide represent one of the most prolonged periods of organic carbon accumulation of the Mesozoic. In this study, we use the molybdenum (Mo) stable isotope system in conjunction with a range of trace metal paleoredox proxies to assess how seawater redox varied both locally and globally during the deposition of the KCF. Facies with lower organic carbon contents (TOC 1-7 wt %) were deposited under mildly reducing (suboxic) conditions, while organic-rich facies (TOC >7 wt %) accumulated under more strongly reducing (anoxic or euxinic) local conditions. Trace metal abundances are closely linked to TOC content, suggesting that the intensity of reducing conditions varied repeatedly during the deposition of the KCF and may have been related to orbitally controlled climate changes. Long-term variations in d98/95Mo are associated with the formation of organic-rich intervals and are related to third-order fluctuations in relative sea level. Differences in the mean d98/95Mo composition of the organic-rich intervals suggest that the global distribution of reducing conditions was more extensive during the deposition of the Pectinatites wheatleyensis and lower Pectinatites hudlestoni zones than during the deposition of the upper Pectinatites hudlestoni and Pectinatites pectinatus zones. The global extent of reducing conditions during the Kimmerigidan was greater than today but was less widespread than during the Toarcian (Early Jurassic) oceanic anoxic event. This study also demonstrates that the Mo isotope system in Jurassic seawater responded to changes in redox conditions in a manner consistent with its behavior in present-day sedimentary environments.