972 resultados para Strictly hyperbolic polynomial
Resumo:
对双曲守恒型方程,将其一阶迎风格式空间差商的常系数摄动展开为时间步长和空间步长的幂级数,通过确定幂级数系数而获得二阶精度的摄动有限差分(PFD)格式。进而从双曲守恒型方程的通量分裂型一阶迎风格式出发,通过娄似的摄动展开方法,获得空间精度为二阶的通量分裂形式的摄动有限差分(FPFD)格式。这两类格式保留了一阶守恒迎风格式的简洁结构形式,使用三节点即可达到二阶精度,又避免了三点二阶格式的非物理数值振荡。并将这两类格式推广应用到双曲守恒型方程组,最后通过模型方程和一维激波管流动的数值算例验证了格式的高精度、高分辨率性质。
Resumo:
Dynamic function of damage is the key to the problem of damage evolution of solids. In order to understand it, one must understand its mesoscopic mechanisms and macroscopic formulation. In terms of evolution equation of microdamage and damage moment, a dynamic function of damage is strictly defined. The mesoscopic mechanism underlying self-closed damage evolution law is investigated by means of double damage moments. Numerical results of damage evolution demonstrate some common features for various microdamage dynamics. Then, the dynamic function of damage is applied to inhomogeneous damage field. In this case, damage evolution rate is no longer equal to the dynamic function of damage. It is found that the criterion for damage localization is closely related to compound damage. Finally, an inversion of damage evolution to the dynamic function of damage is proposed.
Resumo:
OGY method is the most important method of controlling chaos. It stabilizes a hyperbolic periodic orbit by making small perturbations for a system parameter. This paper improves the method of choosing parameter, and gives a mathematics proof of it.
Resumo:
Integran este número de la revista ponencias presentadas en Studia Hispanica Medievalia VIII : Actas de las X Jornadas Internacionales de Literatura Española Medieval, 2011, y de Homenaje al Quinto Centenario del Cancionero General de Hernando del Castillo.
Resumo:
Resumen: El pensamiento filosófico-político de Jacques Maritain tuvo una enorme influencia en Italia durante la segunda mitad del siglo XX, especialmente entre los dirigentes políticos de la democracia cristiana gobernante. En el plano más estrictamente teórico, fue Augusto Del Noce el encargado de introducir las ideas de Maritain en el mundo filosófico italiano. En este artículo el autor recorre las diferentes etapas por las que atravesó Del Noce en su interpretación del pensamiento del filósofo francés, subrayando la continuidad de una coincidencia de fondo en la visión de ambos acerca de la relación entre el Cristianismo y la cultura en la modernidad.
Resumo:
Direct numerical simulation of transition How over a blunt cone with a freestream Mach number of 6, Reynolds number of 10,000 based on the nose radius, and a 1-deg angle of attack is performed by using a seventh-order weighted essentially nonoscillatory scheme for the convection terms of the Navier-Stokes equations, together with an eighth-order central finite difference scheme for the viscous terms. The wall blow-and-suction perturbations, including random perturbation and multifrequency perturbation, are used to trigger the transition. The maximum amplitude of the wall-normal velocity disturbance is set to 1% of the freestream velocity. The obtained transition locations on the cone surface agree well with each other far both cases. Transition onset is located at about 500 times the nose radius in the leeward section and 750 times the nose radius in the windward section. The frequency spectrum of velocity and pressure fluctuations at different streamwise locations are analyzed and compared with the linear stability theory. The second-mode disturbance wave is deemed to be the dominating disturbance because the growth rate of the second mode is much higher than the first mode. The reason why transition in the leeward section occurs earlier than that in the windward section is analyzed. It is not because of higher local growth rate of disturbance waves in the leeward section, but because the growth start location of the dominating second-mode wave in the leeward section is much earlier than that in the windward section.
Resumo:
A numerical model for shallow-water equations has been built and tested on the Yin-Yang overset spherical grid. A high-order multimoment finite-volume method is used for the spatial discretization in which two kinds of so-called moments of the physical field [i.e., the volume integrated average ( VIA) and the point value (PV)] are treated as the model variables and updated separately in time. In the present model, the PV is computed by the semi-implicit semi-Lagrangian formulation, whereas the VIA is predicted in time via a flux-based finite-volume method and is numerically conserved on each component grid. The concept of including an extra moment (i.e., the volume-integrated value) to enforce the numerical conservativeness provides a general methodology and applies to the existing semi-implicit semi-Lagrangian formulations. Based on both VIA and PV, the high-order interpolation reconstruction can only be done over a single grid cell, which then minimizes the overlapping zone between the Yin and Yang components and effectively reduces the numerical errors introduced in the interpolation required to communicate the data between the two components. The present model completely gets around the singularity and grid convergence in the polar regions of the conventional longitude-latitude grid. Being an issue demanding further investigation, the high-order interpolation across the overlapping region of the Yin-Yang grid in the current model does not rigorously guarantee the numerical conservativeness. Nevertheless, these numerical tests show that the global conservation error in the present model is negligibly small. The model has competitive accuracy and efficiency.
Resumo:
Resumen: Michael Behe y William Dembski son dos de los líderes de la Teoría del Diseño Inteligente, una propuesta surgida como respuesta a los modelos evolucionistas y anti-finalistas prevalentes en ciertos ambientes académicos e intelectuales, especialmente del mundo anglosajón. Las especulaciones de Behe descansan en el concepto de “sistema de complejidad irreductible”, entendido como un conjunto ordenado de partes cuya funcionalidad depende estrictamente de su indemnidad estructural, y que su origen resulta, por tanto, refractario a explicaciones gradualistas. Estos sistemas, según Behe, están presentes en los vivientes, lo que permitiría inferir que ellos no son el producto de mecanismos ciegos y azarosos, sino el resultado de un diseño. Dembski, por su parte, ha abordado el problema desde una perspectiva más cuantitativa, desarrollando un algoritmo probabilístico conocido como “filtro explicatorio”, que permitiría, según el autor, inferir científicamente la presencia de un diseño, tanto en entidades artificiales como naturales. Trascendiendo las descalificaciones del neodarwinismo, examinamos la propuesta de estos autores desde los fundamentos filosóficos de la escuela tomista. A nuestro parecer, hay en el trabajo de estos autores algunas intuiciones valiosas, las que sin embargo suelen pasar desapercibidas por la escasa formalidad en que vienen presentadas, y por la aproximación eminentemente mecanicista y artefactual con que ambos enfrentan la cuestión. Es precisamente a la explicitación de tales intuiciones a las que se dirige el artículo.
Resumo:
Resumen: En la carrera por obtener la corona de Aragón, que ha quedado vacante, el Infante don Fernando de Castilla se enfrenta a cinco contrincantes con las mismas expectativas. Luego de un lapso de dos años de Interregno y de confrontación en todos los frentes, el parlamentario, el militar, el económico y hasta el religioso, el Infante es elegido como nuevo monarca en el Compromiso de Caspe. Si durante el proceso electivo las relaciones habían sido de pura competencia, luego del mismo los conflictos continúan, en especial con uno de los candidatos, el Conde de Urgel. Este artículo tiene como objetivo describir este conflicto, como un proceso vivo que se transforma, adquiere nuevas dimensiones, involucra a otras partes, con intervenciones de terceros conciliadores e infructuosas negociaciones para dar una solución a esta disputa, que finalmente se define a través de la lucha armada.
Resumo:
By using characteristic analysis of the linear and nonlinear parabolic stability equations (PSE), PSE of primitive disturbance variables are proved to be parabolic intotal. By using sub-characteristic analysis of PSE, the linear PSE are proved to be elliptical and hyperbolic-parabolic for velocity U, in subsonic and supersonic, respectively; the nonlinear PSE are proved to be elliptical and hyperbolic-parabolic for relocity U + u in subsonic and supersonic, respectively. The methods are gained that the remained ellipticity is removed from the PSE by characteristic and sub-characteristic theories, the results for the linear PSE are consistent with the known results, and the influence of the Mach number is also given out. At the same time, the methods of removing the remained ellipticity are further obtained from the nonlinear PSE.
Resumo:
Analisa a crise do Parlamento no desempenho de suas funções típicas, a saber, a representativa, a legislativa e a fiscalizadora. Em seguida, desenvolve o conceito de educação legislativa, destacando duas dimensões: os efeitos epistêmicos do desempenho das funções típicas e as atividades de caráter estritamente educativo, como o Parlamento Jovem. Por fim,discute se a educação legislativa pode ser considerada uma resposta para a crise do Parlamento.
Resumo:
In the present paper, by use of the boundary integral equation method and the techniques of Green fundamental solution and singularity analysis, the dynamic infinite plane crack problem is investigated. For the first time, the problem is reduced to solving a system of mixed-typed integral equations in Laplace transform domain. The equations consist of ordinary boundary integral equations along the outer boundary and Cauchy singular integral equations along the crack line. The equations obtained are strictly proved to be equivalent with the dual integral equations obtained by Sih in the special case of dynamic Griffith crack problem. The mixed-type integral equations can be solved by combining the numerical method of singular integral equation with the ordinary boundary element method. Further use the numerical method for Laplace transform, several typical examples are calculated and their dynamic stress intensity factors are obtained. The results show that the method proposed is successful and can be used to solve more complicated problems.
Resumo:
In this paper, a unified model for dislocation nucleation, emission and dislocation free zone is proposed based on the Peierls framework. Three regions are identified ahead of the crack tip. The emitted dislocations, located away from the crack tip in the form of an inverse pileup, define the plastic zone. Between that zone and the cohesive zone immediately ahead of the crack tip, there is a dislocation free zone. With the stress field and the dislocation density field in the cohesive zone and plastic zone being, respectively, expressed in the first and second Chebyshev polynomial series, and the opening and slip displacements in trigonometric series, a set of nonlinear algebraic equations can be obtained and solved with the Newton-Raphson Method. The results of calculations for pure shearing and combined tension and shear loading after dislocation emission are given in detail. An approximate treatment of the dynamic effects of the dislocation emission is also developed in this paper, and the calculation results are in good agreement with those of molecular dynamics simulations.
Resumo:
In this paper, by use of the boundary integral equation method and the techniques of Green basic solution and singularity analysis, the dynamic problem of antiplane is investigated. The problem is reduced to solving a Cauchy singular integral equation in Laplace transform space. This equation is strictly proved to be equivalent to the dual integral equations obtained by Sih [Mechanics of Fracture, Vol. 4. Noordhoff, Leyden (1977)]. On this basis, the dynamic influence between two parallel cracks is also investigated. By use of the high precision numerical method for the singular integral equation and Laplace numerical inversion, the dynamic stress intensity factors of several typical problems are calculated in this paper. The related numerical results are compared to be consistent with those of Sih. It shows that the method of this paper is successful and can be used to solve more complicated problems. Copyright (C) 1996 Elsevier Science Ltd
Resumo:
The problems of dislocation nucleation and emission from a crack tip are analysed based on Peierls model. The concept adopted here is essentially the same as that proposed by Rice. A slight modification is introduced here to identify the pure linear elastic response of material. A set of new governing equations is developed, which is different from that used by Beltz and Rice. The stress field and the dislocation density field can be expressed as the first and second Chebyshev polynomial series respectively. Then the opening and slip displacements can be expanded as the trigonometric series. The Newton-Raphson Method is used to solve a set of nonlinear algebraic equations. The new governing equations allow us to extend the analyses to the case of dislocation emission. The calculation results for pure shearing, pure tension and combined tension and shear loading are given in detail.