969 resultados para Stress corrosion cracking
Resumo:
There is little doubt that both mammalian and teleost growth hormones can accelerate growth and increase food conversion efficiency in all commonly-reared species of salmonid fish. In those vertebrates that have been closely studied (predominantly mammals), the pituitary hormone somatotropin (GH or growth hormone) is a prime determinant of somatic growth. The hormone stimulates protein biosynthesis and tissue growth, enhances lipid utilization and lipid release from the adipose tissues (a protein-sparing effect) and suppresses the peripheral utilization of glucose. The present study is a prerequisite for future work on growth hormone physiology in salmonids and should contribute to our understanding of the mechanisms of growth suppression in stressed fish. Plasma growth hormone (GH) levels were measured in rainbow trout using a radioimmunoassay developed against chinook salmon growth hormone.
Resumo:
The effects of stress on both microalgal and macroalgal communities are considered. On one hand the contrasting approaches of studies of these two communities reflect intrinsic differences in plant size, longevity and ease of handling. On the other hand they reveal that biological monitoring of the potentially deleterious effects of man's activities has focused largely on freshwater environments in which macroalgae only occasionally dominate. Large conspicuous plants can be readily investigated as individuals, whereas it is virtually impossible to trace effects of stress on an individual cell of a vegetatively-reproducing microalga; a population approach is almost inevitably necessary. However, rapid turnover rates, a spectrum of ecological characteristics distributed between many taxa, and the potential for statistical analysis, have facilitated the use of microalgae in environmental impact studies. Failure to extend such investigations into marine systems rests as much on man's ability to ignore environmental deterioration until it affects his quality of life as on the visual dominance of seaweeds around our coasts. However, large gaps remain in our knowledge of both large and small algae; some reported community changes over time are suspect, and the causes of even blatant changes are not always apparent.
Resumo:
This paper presents an account of some current uses of RIVPACS (River Invertebrate Prediction and Classification System), a software package developed by the Institute of Freshwater Ecology (UK). Background information is also given on the unique data-set on which the system is based. Before discussing RIVPACS, we consider the range of environmental stresses encountered in flowing-water systems and some of the ways in which stresses may affect macroinvertebrate communities. The wide application and relevance of the RIVPACS approach was recognised when it was chosen as the biological method for use throughout the UK in the 1990 River Quality Survey (RQS). In the concluding section we list some lessons learnt both from the 1990 survey and from our own testing exercise, and we outline current developments which will lead to a new version of RIVPACS for use in the 1995 RQS.
Resumo:
This review examines water quality and stress indicators at levels of organisation from the individual to the community and beyond by means of three case studies concentrating on rocky shores within the north-east Atlantic. Responses of dogwhelks (Nucella) to tributyltin pollution from antifouling paints is examined as the main case study. There are effects at the individual level (development of male sexual characteristics in the female leading to effective sterility) and population level (reduction in juveniles, few females and eventual population disappearance of dogwhelks in badly contaminated areas) but information on community level effects of dogwhelk demise is sparse. Such effects were simulated by dogwhelk removal experiments on well studied, moderately exposed ledges on shores on the Isle of Man. The removal of dogwhelks reduced the size and longevity of newly established Fucus clumps that had escaped grazing. Removal of dogwhelks also increased the likelihood of algal escapes. In a factorial experiment dogwhelks were shown to be less important than limpets \{Patella) in structuring communities but still had a significant modifying effect by increasing the probability of algal escapes. Community level responses to stress on rocky shores are then explored by reference to catastrophic impacts such as oil spills, using the Torrey Canyon as a case study. Recovery of the system in response to this major perturbation took between 10-15 years through a series of damped oscillations. The final case study is that of indicators of ecosystem level change in response to climate fluctuations, using ratios of northern \{Semibalanus balanoides) and southern (Chthamalus spp.) barnacles. Indices derived from counts on the shore show good correlations with inshore sea-water temperatures after a 2-year lag phase. The use of barnacles to measure offshore changes is reviewed. The discussion considers the use of bioindicators at various levels of organisation.
Resumo:
This paper reviews the effectiveness of Gammarus scope for growth (SfG) as an indicator of water quality. In addition, the link between physiological changes and effects at higher levels of biological organisation is addressed. Exposure to a range of toxicants resulted in decreases in Gammarus SfG which were qualitatively and quantitatively correlated with subsequent reductions in growth and reproduction. Reductions in SfG were due principally to a decrease in energy intake (i.e. feeding rate) rather than an increase in energy expenditure. Gammarus pulex is an important shredder in many stream communities and stressed-induced reductions in its feeding activity were correlated with reductions in the processing of leaf litter by a semi-natural stream community. Hence, changes in the physiological energetics of Gammarus provide a general and sensitive indicator of stress which can be linked to effects at higher levels of biological organisation. Under long-term stress and hence prolonged reductions in SfG, animals may adapt by modifying their life-history strategies and producing fewer, larger offspring.
Resumo:
The effects of stress on the immune system of various fish species including dab Limanda limanda, flounder Platichthys flesus, sea bass Dicentrarchus labrax and gobies Zosterisessor ophiocephalus, were investigated from laboratory and field experiments, using various assays to measure immunocompetence, correlated with histological and ultrastructural observations. Modulation of the immune system was demonstrated at tissue, cellular and biochemical levels following exposure to various stressors. The spleen somatic index was depressed in dab stressed in the laboratory and gobies collected from polluted sites in the Venice Lagoon. Differential blood cell counts consistently showed an increase in phagocytes and decrease in thrombocytes in fish exposed to various stressors. Phagocytic activity from spleen and kidney adherent cells was stimulated in dab stressed by transportation but depressed in fish exposed to chemical pollutants. Respiratory burst activity in phagocytic cells was also stimulated in stressed dab but depressed in sea bass exposed to cadmium. The results are discussed in relation to current concepts on stress in fish and the regulation of the immune system.