953 resultados para Strawberries - Varieties
Resumo:
The terminator gene can render seeds sterile, so forcing farmers to purchase fresh seed every year. It is a technological solution to the problem of market failure that could increase the appropriability of R&D investment more effectively than intellectual property rights legislation or patents. This paper shows that appropriability should be more than tripled and that this leads to greater private R&D investment, which may be expected to double or triple. This would bring open-pollinating varieties into line with F1 hybrids, for which seed cannot be saved. In turn, the increased investment should raise yield increases to levels similar to those for hybrid crops. Thus, there are benefits to set against the possible ecological and environmental costs and the clear distributional and social consequences. The paper discusses the way the seed market is developing, the possible impacts, especially from a developing country viewpoint, and considers the policy changes that are needed.
Resumo:
Genealogical data have been used very widely to construct indices with which to examine the contribution of plant breeding programmes to the maintenance and enhancement of genetic resources. In this paper we use such indices to examine changes in the genetic diversity of the winter wheat crop in England and Wales between 1923 and 1995. We find that, except for one period characterized by the dominance of imported varieties, the genetic diversity of the winter wheat crop has been remarkably stable. This agrees with many studies of plant breeding programmes elsewhere. However, underlying the stability of the winter wheat crop is accelerating varietal turnover without any significant diversification of the genetic resources used. Moreover, the changes we observe are more directly attributable to changes in the varietal shares of the area under winter wheat than to the genealogical relationship between the varieties sown. We argue, therefore, that while genealogical indices reflect how well plant breeders have retained and exploited the resources with which they started, these indices suffer from a critical limitation. They do not reflect the proportion of the available range of genetic resources which has been effectively utilized in the breeding programme: complex crosses of a given set of varieties can yield high indices, and yet disguise the loss (or non-utilization) of a large proportion of the available genetic diversity.
Resumo:
This article is a commentary on several research studies conducted on the prospects for aerobic rice production systems that aim at reducing the demand for irrigation water which in certain major rice producing areas of the world is becoming increasingly scarce. The research studies considered, as reported in published articles mainly under the aegis of the International Rice Research Institute (IRRI), have a narrow scope in that they test only 3 or 4 rice varieties under different soil moisture treatments obtained with controlled irrigation, but with other agronomic factors of production held as constant. Consequently, these studies do not permit an assessment of the interactions among agronomic factors that will be of critical significance to the performance of any production system. Varying the production factor of "water" will seriously affect also the levels of the other factors required to optimise the performance of a production system. The major weakness in the studies analysed in this article originates from not taking account of the interactions between experimental and non-experimental factors involved in the comparisons between different production systems. This applies to the experimental field design used for the research studies as well as to the subsequent statistical analyses of the results. The existence of such interactions is a serious complicating element that makes meaningful comparisons between different crop production systems difficult. Consequently, the data and conclusions drawn from such research readily become biased towards proposing standardised solutions for possible introduction to farmers through a linear technology transfer process. Yet, the variability and diversity encountered in the real-world farming environment demand more flexible solutions and approaches in the dissemination of knowledge-intensive production practices through "experiential learning" types of processes, such as those employed by farmer field schools. This article illustrates, based on expertise of the 'system of rice intensification' (SRI), that several cost-effective and environment-friendly agronomic solutions to reduce the demand for irrigation water, other than the asserted need for the introduction of new cultivars, are feasible. Further, these agronomic Solutions can offer immediate benefits of reduced water requirements and increased net returns that Would be readily accessible to a wide range of rice producers, particularly the resource poor smallholders. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Agriculture, particularly intensive crop production, makes a significant contribution to environmental pollution. A variety of canola (Brassica napus) has been genetically modified to enhance nitrogen use efficiency, effectively reducing the amount of fertilizer required for crop production. A partial life-cycle assessment adapted to crop production was used to assess the potential environmental impacts of growing genetically modified, nitrogen use-efficient (GMNUE) canola in North Dakota and Minnesota compared with a conventionally bred control variety. The analysis took into account the entire production system used to produce 1 tonne of canola. This comprised raw material extraction, processing and transportation, as well as all agricultural field operations. All emissions associated with the production of 1 tonne of canola were listed, aggregated and weighted in order to calculate the level of environmental impact. The findings show that there are a range of potential environmental benefits associated with growing GMNUE canola. These include reduced impacts on global warming, freshwater ecotoxicity, eutrophication and acidification. Given the large areas of canola grown in North America and, in particular, Canada, as well as the wide acceptance of genetically modified varieties in this area, there is the potential for GMNUE canola to reduce pollution from agriculture, with the largest reductions predicted to be in greenhouse gases and diffuse water pollution.
Resumo:
One of the major factors contributing to the failure of new wheat varieties is seasonal variability in end-use quality. Consequently, it is important to produce varieties which are robust and stable over a range of environmental conditions. Recently developed sample preparation methods have allowed the application of FT-IR spectroscopic imaging methods to the analysis of wheat endosperm cell wall composition, allowing the spatial distribution of structural components to be determined without the limitations of conventional chemical analysis. The advantages of the methods, described in this paper, are that they determine the composition of endosperm cell walls in situ and with minimal modification during preparation. Two bread-making wheat cultivars, Spark and Rialto, were selected to determine the impact of environmental conditions on the cell-wall composition of the starchy endosperm of the developing and mature grain, focusing on the period of grain filling (starting at about 14 days after anthesis). Studies carried out over two successive seasons show that the structure of the arabinoxylans in the endosperm cell walls changes from a highly branched form to a less branched form. Furthermore, during development the rate of restructuring was faster when the plants were grown at higher temperature with restricted water availability from 14 days after anthesis with differences in the rate of restructuring occurring between the two cultivars.
Resumo:
Agricultural policy liberalisation, concern about unhealthy diets and growing recognition of the importance of sustainable land use have fostered interest in the development of competitive food chains based around products that are beneficial to the rural environment. We review the potential for foods with enhanced health attributes based on alternative varieties/breeds and production systems to traditional agriculture which has been predominantly motivated by yields. We concentrate on soft fruit, which is an important source of polyphenols, and grazing livestock systems that have the potential for improving fatty acid profiles in meat products and find there to be clear scientific potential, but limited research to date. Consumer research suggests considerable acceptance of such products and willingness to pay sufficient to cover additional production costs. Purchase of such foods could have major implications for agricultural land use and the rural environment. There is little research to date on specific healthier food products, but spatially explicit models are being developed to assess land use and environmental implications of changing demand and husbandry methods.
Resumo:
Crop wild relatives (CWRs) will gain in importance as changing climates put both traditional and advanced cultivars under increasing stress, leading to a need for plant breeding to produce new varieties able to grow under the new climate regimes. Traditionally, the approach to the conservation of CWRs has been ex situ - the collection and maintenance of seed accessions in national, regional, and international germplasm banks, supplemented by field genebanks for species with recalcitrant seeds. More recently the need to maintain CWRs in their natural habitats (in situ) has been advocated. This is very different from on-farm conservation of traditional land races and is a complex multidisciplinary process. Particular problems that have to be addressed include the adoption of a workable definition of what is a CWR, application of priority-determining mechanisms because of the large number of candidate species of CWRs, assessment of the effectiveness of conservation approaches, the relative costs of in situ and ex situ approaches, integration of CWR in situ conservation into national programmes, and the challenges posed by global change. CWRs may be conserved in both protected and non-protected areas. Presence in the former is no guarantee of their survival and in most cases some degree of management intervention is required. Experience derived from recent EU- and GEF-funded CWR conservation initiatives will be drawn upon.
Resumo:
The objective of this study was to quantify the effect of photoperiod on the duration from vine (shoot) emergence to flowering in white or Guinea yam (Dioscorea rotundata). The duration from vine emergence to flowering in two clonal varieties of yam (TDr 131 and TDr 99-9) was recorded at 10 different sowing dates/locations in Nigeria. Durations to flowering varied from 40 to > 88 days. Mean daily temperature and photoperiod between vine emergence and flowering varied from 25 to 27 degrees C and 13.1 to 13.4 h day(-1), respectively. Both clones had similar responses to temperature, with base and optimum temperatures of 12 and 25-27 degrees C, respectively. Thermal durations to flowering were strongly related (r(2) > 0.75-0.83) to absolute photoperiod (h) at vine emergence as well as to rate of change of photoperiod (s day(-1)) at vine emergence. The response to absolute photoperiod suggests that white yams are quantitative LDPs, flowering sooner in long than short days. Yams also flowered earlier when the rate of change of photoperiod was positive but small, or was negative. It is suggested that yams may use a combination of photoperiod and rate of change in order to fine tune flowering time. (c) 2006 Elsevier B.V. All rights reserved.
The genus Borassus (Arecaceae) in West Africa, with a description of a new species from Burkina Faso
Resumo:
Borassus akeassii Bayton, Ouedraogo & Guinko sp. nov. (Arecaceae) is described as a new species from western Burkina Faso in West Africa. It has been confused with the widely distributed African species B. aethiopum and more recently with the Asian B. flabellifer. However, it is distinguished by its glaucous, green leaves with weakly armed petioles and a characteristic pattern of lamina venation. The fruits have a pointed apex and are greenish when ripe, and the flowers of the pistillate inflorescence are arranged in three spirals. The pollen has a reticulate tectum and distinctive ornamentation. The distribution of B. akeassii is discussed and the status of the varieties of Borassus aethiopum (var. bagamojensis and var. senegalensis) is examined. (c) 2006 The Linnean Society of London.
Resumo:
To investigate flower induction in June-bearing strawberry plants, morphological changes in shoot apices and Historic H4 expression in the central zone during flower initiation were observed. Strawberry plants were placed under flower inducible, short-day conditions (23 degrees C/17 degrees C, 10 h day length) for differing number of days (8, 16, 20, 24 or 32 days) and then these plants were transferred to non-inducible, long-day conditions (25 degrees C/20 degrees C, 14 h day length). The shoot apices of plants placed under short-day conditions for 8 days were flat, similar to shoot apices of plants in the vegetative phase of development, and Histone H4 was not expressed in the central zone during the experimental period. On the other hand, the shoot apices of plants placed under short-day conditions for 16 days remained flat, similar to shoot apices of plants placed under short-day conditions for 8 days, but Histone H4 was expressed in the central zone at the end of the short-day treatment. Morphological changes in the shoot apices of these plants were observed 8 days after the change in day-length. These plants developed differentiated flower organs after they were grown for another 30 days under long-day conditions. These results indicate that changes in the expression pattern of the Histone H4 gene occur before morphological changes during flower induction and that the expression of the gene in the central zone can be used as one of the indicators of the flowering process in strawberries. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
The prolonged season of everbearing strawberries causes vegetative growth and fruiting to coincide, so the influence of the environment on the balance of assimilate partitioning between vegetative and reproductive growth is important for optimised long-season production. Fruiting patterns were evaluated over three seasons for the everbearing strawberry 'Everest'. A range of temperatures (15-27 degrees C) was studied in the first season to establish a temperature response curve. Detailed transfer treatments in the second and third seasons gave insight into heat-induced cropping troughs ('thermo-dormancy'). The detrimental effect on yield of thermo-dormancy was prevented by cool night-time temperature during the periods of heat stress, a treatment that resulted in the largest total fruit fresh weight and overall yield. The highest yields were recorded for plants grown between 18 and 23 degrees C. At higher temperatures fruit number increased, but fruit weight decreased. The importance of night-time temperature in optimising long-season fruit production has significance for commercial production, in which protected cropping tends to increase average temperature through the season.
Resumo:
Potatoes of a number of varieties of contrasting levels of resistance were planted in pure or mixed stands in four experiments over 3 years. Three experiments compared the late blight severity and progress in mixtures with that in pure stands. Disease on susceptible or moderately resistant varieties typical of those in commercial use was similar in mixtures and pure stands. In 2 of 3 years, there were slight reductions on cv. Sante, which is moderately susceptible, in mixture with cv. Cara, which is moderately resistant. Cara was unaffected by this mixture. Mixtures of an immune or near-immune partner with Cara or Sante substantially reduced disease on the latter. The effect of the size of plots of individual varieties or mixtures on blight severity was compared in two experiments. Larger plots had a greater area under the disease progress curve, but the average rate of disease progress was greater in smaller plots; this may be because most disease progress took place later, under more favourable conditions, in the smaller plots. In one experiment, two planting densities were used. Density had no effect on disease and did not interact with mixture effects. The overall conclusion is that, while mixtures of potato varieties may be desirable for other reasons, they do not offer any improvement on the average of the disease resistance of the components.
Resumo:
Data from 60 multiparous Holstein cows were used in a 12-wk continuous design feeding trial. Cows were allocated to 1 of 4 experimental treatments (T1 to T4). In T1 and T2, the total mixed ration (TMR) contained either corn silage from the genetically modified (GM) variety Chardon Liberty Link, which is tolerant to the herbicide glufosinate ammonium, or its near isogenic nonGM counterpart, whereas the TMR used in T3 and T4 contained corn silage from the commercially available nonGM varieties Fabius and Antares, respectively. The objectives of the study were to determine if the inserted gene produced a marked effect on chemical composition, nutritive value, feed intake, and milk production, and to determine if transgenic DNA and the protein expressed by the inserted gene could be detected in bovine milk. The nutritive value, fermentation characteristics, mineral content, and amino acid composition of all 4 silages were similar. There were no significant treatment effects on milk yield, milk composition, and yield of milk constituents, and the dry matter (DM) intake of the GM variety was not significantly different from the 2 commercial varieties. However, although the DM intake noted for the nonGM near-isogenic variety was similar to the commercial varieties, it was significantly lower when compared with the GM variety. Polymerase chain reaction analyses of milk samples collected at wk 1, 6, and 12 of the study showed that none of the 90 milk samples tested positive, above a detection limit of 2.5 ng of total genomic DNA/mL of milk, for either tDNA (event T25) or the single-copy endogenous Zea mays gene, alcohol dehydrogenase. Using ELISA assays, the protein expressed by the T25 gene was not detected in milk.
Resumo:
While only about 1-200 species are used intensively in commercial floriculture (e.g. carnations, chrysanthemums, gerbera, narcissus, orchids, tulips, lilies, roses, pansies and violas, saintpaulias, etc.) and 4-500 as house plants, several thousand species of herbs, shrubs and trees are traded commercially by nurseries and garden centres as ornamentals or amenity species. Most of these have been introduced from the wild with little selection or breeding. In Europe alone, 12 000 species are found in cultivation in general garden collections (i.e. excluding specialist collections and botanic gardens). In addition, specialist collections (often very large) of many other species and/or cultivars of groups such as orchids, bromeliads, cacti and succulents, primulas, rhododendrons, conifers and cycads are maintained in several centres such as botanic gardens and specialist nurseries, as are 'national collections' of cultivated species and cultivars in some countries. Specialist growers, both professional and amateur, also maintain collections of plants for cultivation, including, increasingly, native plants. The trade in ornamental and amenity horticulture cannot be fully estimated but runs into many billions of dollars annually and there is considerable potential for further development and the introduction of many new species into the trade. Despite this, most of the collections are ad hoc and no co-ordinated efforts have been made to ensure that adequate germplasm samples of these species are maintained for conservation purposes and few of them are represented at all adequately in seed banks. Few countries have paid much attention to germplasm needs of ornamentals and the Ornamental Plant Germplasm Center in conjunction with the USDA National Plant Germplasm System at The Ohio State University is an exception. Generally there is a serious gap in national and international germplasm strategies, which have tended to focus primarily on food plants and some forage and industrial crops. Adequate arrangements need to be put in place to ensure the long- and medium-term conservation of representative samples of the genetic diversity of ornamental species. The problems of achieving this will be discussed. In addition, a policy for the conservation of old cultivars or 'heritage' varieties of ornamentals needs to be formulated. The considerable potential for introduction of new ornamental species needs to be assessed. Consideration needs to be given to setting up a co-ordinating structure with overall responsibility for the conservation of germplasm of ornamental and amenity plants.
Resumo:
In the absence of equivalent research on genetically modified (GM) pest-resistant crops, their impact in pest management can be predicted from experience with traditionally bred varieties which share with GM crops the characteristic that the resistance is based on high expression of a single toxin. Such varieties lead to the rapid selection of tolerant pest strains, damage biological control and induce tolerance to synthetic pesticides. By contrast, polygenic and more broadly based resistant varieties will maintain their resistance for longer, and often synergise beneficially with biological control. The pests also become more susceptible to insecticides, giving the opportunity for applications which are selective in favour of natural enemies. However, although GM crops compare badly with traditional pest-resistant varieties, they compare favourably with insecticides, the technology they are most likely to replace.