913 resultados para Stochastic Subspace System Identification


Relevância:

30.00% 30.00%

Publicador:

Resumo:

* This research was supported by a grant from the Greek Ministry of Industry and Technology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural monitoring and dynamic identification of the manmade and natural hazard objects is under consideration. Math model of testing object by set of weak stationary dynamic actions is offered. The response of structures to the set of signals is under processing for getting important information about object condition in high frequency band. Making decision procedure into active monitoring system is discussed as well. As an example the monitoring outcome of pillar-type monument is given.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The neural-like growing networks used in the intelligent system of recognition of images are under consideration in this paper. All operations made over the image on a pre-design stage and also classification and storage of the information about the images and their further identification are made extremely by mechanisms of neural-like networks without usage of complex algorithms requiring considerable volumes of calculus. At the conforming hardware support the neural network methods allow considerably to increase the effectiveness of the solution of the given class of problems, saving a high accuracy of result and high level of response, both in a mode of training, and in a mode of identification.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Following the recently developed algorithms for fully probabilistic control design for general dynamic stochastic systems (Herzallah & Káarnáy, 2011; Kárný, 1996), this paper presents the solution to the probabilistic dual heuristic programming (DHP) adaptive critic method (Herzallah & Káarnáy, 2011) and randomized control algorithm for stochastic nonlinear dynamical systems. The purpose of the randomized control input design is to make the joint probability density function of the closed loop system as close as possible to a predetermined ideal joint probability density function. This paper completes the previous work (Herzallah & Kárnáy, 2011; Kárný, 1996) by formulating and solving the fully probabilistic control design problem on the more general case of nonlinear stochastic discrete time systems. A simulated example is used to demonstrate the use of the algorithm and encouraging results have been obtained.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fermentation processes as objects of modelling and high-quality control are characterized with interdependence and time-varying of process variables that lead to non-linear models with a very complex structure. This is why the conventional optimization methods cannot lead to a satisfied solution. As an alternative, genetic algorithms, like the stochastic global optimization method, can be applied to overcome these limitations. The application of genetic algorithms is a precondition for robustness and reaching of a global minimum that makes them eligible and more workable for parameter identification of fermentation models. Different types of genetic algorithms, namely simple, modified and multi-population ones, have been applied and compared for estimation of nonlinear dynamic model parameters of fed-batch cultivation of S. cerevisiae.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Identification of humans via ECG is being increasingly studied because it can have several advantages over the traditional biometric identification techniques. However, difficulties arise because of the heartrate variability. In this study we analysed the influence of QT interval correction on the performance of an identification system based on temporal and amplitude features of ECG. In particular we tested MLP, Naive Bayes and 3-NN classifiers on the Fantasia database. Results indicate that QT correction can significantly improve the overall system performance. © 2013 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper considers the global synchronisation of a stochastic version of coupled map lattices networks through an innovative stochastic adaptive linear quadratic pinning control methodology. In a stochastic network, each state receives only noisy measurement of its neighbours' states. For such networks we derive a generalised Riccati solution that quantifies and incorporates uncertainty of the forward dynamics and inverse controller in the derivation of the stochastic optimal control law. The generalised Riccati solution is derived using the Lyapunov approach. A probabilistic approximation type algorithm is employed to estimate the conditional distributions of the state and inverse controller from historical data and quantifying model uncertainties. The theoretical derivation is complemented by its validation on a set of representative examples.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ACM Computing Classification System (1998): I.2.8 , I.2.10, I.5.1, J.2.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

AMS subject classification: 90C31, 90A09, 49K15, 49L20.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

2000 Mathematics Subject Classification: 62H15, 62P10.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Report published in the Proceedings of the National Conference on "Education and Research in the Information Society", Plovdiv, May, 2016

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Spamming has been a widespread problem for social networks. In recent years there is an increasing interest in the analysis of anti-spamming for microblogs, such as Twitter. In this paper we present a systematic research on the analysis of spamming in Sina Weibo platform, which is currently a dominant microblogging service provider in China. Our research objectives are to understand the specific spamming behaviors in Sina Weibo and find approaches to identify and block spammers in Sina Weibo based on spamming behavior classifiers. To start with the analysis of spamming behaviors we devise several effective methods to collect a large set of spammer samples, including uses of proactive honeypots and crawlers, keywords based searching and buying spammer samples directly from online merchants. We processed the database associated with these spammer samples and interestingly we found three representative spamming behaviors: Aggressive advertising, repeated duplicate reposting and aggressive following. We extract various features and compare the behaviors of spammers and legitimate users with regard to these features. It is found that spamming behaviors and normal behaviors have distinct characteristics. Based on these findings we design an automatic online spammer identification system. Through tests with real data it is demonstrated that the system can effectively detect the spamming behaviors and identify spammers in Sina Weibo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radio frequency identification (RFID) technology has gained increasing popularity in businesses to improve operational efficiency and maximise costs saving. However, there is a gap in the literature exploring the enhanced use of RFID to substantially add values to the supply chain operations, especially beyond what the RFID vendors could offer. This paper presents a multi-agent system, incorporating RFID technology, aimed at fulfilling the gap. The system is developed to model supply chain activities (in particular, logistics operations) and is comprised of autonomous and intelligent agents representing the key entities in the supply chain. With the advanced characteristics of RFID incorporated, the agent system examines ways logistics operations (i.e. distribution network) particular) can be efficiently reconfigured and optimised in response to dynamic changes in the market, production and at any stage in the supply chain. © 2012 IEEE.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Based on dynamic renormalization group techniques, this letter analyzes the effects of external stochastic perturbations on the dynamical properties of cholesteric liquid crystals, studied in presence of a random magnetic field. Our analysis quantifies the nature of the temperature dependence of the dynamics; the results also highlight a hitherto unexplored regime in cholesteric liquid crystal dynamics. We show that stochastic fluctuations drive the system to a second-ordered Kosterlitz-Thouless phase transition point, eventually leading to a Kardar-Parisi-Zhang (KPZ) universality class. The results go beyond quasi-first order mean-field theories, and provides the first theoretical understanding of a KPZ phase in distorted nematic liquid crystal dynamics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Stochastic anti-resonance, that is resonant enhancement of randomness caused by polarization mode beatings, is analyzed both numerically and analytically on an example of fibre Raman amplifier with randomly varying birefringence. As a result of such anti-resonance, the polarization mode dispersion growth causes an escape of the signal state of polarization from a metastable state corresponding to the pulling of the signal to the pump state of polarization.This phenomenon reveals itself in abrupt growth of gain fluctuations as well as in dropping of Hurst parameter and Kramers length characterizing long memory in a system and noise induced escape from the polarization pulling state. The results based on analytical multiscale averaging technique agree perfectly with the numerical data obtained by direct numerical simulations of underlying stochastic differential equations. This challenging outcome would allow replacing the cumbersome numerical simulations for real-world extra-long high-speed communication systems.