900 resultados para Step etching
Resumo:
Mechanical stability of EWT solar cells deteriorates when holes are created in the wafer. Nevertheless, the chemical etching after the hole generation process improves the mechanical strength by removing part of the damage produced in the drilling process. Several sets of wafers with alkaline baths of different duration have been prepared. The mechanical strength has been measured by the ring on ring bending test and the failure stresses have been obtained through a FE simulation of the test. This paper shows the comparison of these groups of wafers in order to obtain an optimum value of the decreased thickness produced by the chemical etching
Resumo:
Abstract Protocols have been established to clone adult cork oak trees by somatic embryogenesis using semisolid medium. However, for economically viable mass propagation, embryogenic cultures in liquid medium need to be developed. In this study, suspension cultures were initiated from embryo clusters obtained by secondary embryogenesis on a gelled medium lacking plant growth regulators. After 6 days of culture, these embryo clusters generated high cell density suspensions that also contained small organized structures (embryos and embryogenic clumps). As the culture duration increased, tissue necrosis and fewer embryogenic structures were observed and the establishment of suspension cultures failed. An alternative method was found adequate for initiation of embryogenic suspensions: embryo clusters from gelled medium were briefly shaken in liquid medium and detached cells and embryogenic masses of 41?800 lm were used as inoculum. Maintenance of embryogenic suspensions was achieved using a low-density inoculum (43 mg l-1) by subculturing four embryogenic clumps of 0.8?1.2 mm per 70 ml of medium. Proliferation ability was maintained for almost 1 year through ten consecutive subcultures. The initiation and maintenance protocols first developed for a single genotype were effective when tested on 11 cork oak genotypes.