894 resultados para Standardization in robotics


Relevância:

30.00% 30.00%

Publicador:

Resumo:

At the University of Worcester we are continually striving to find new approaches to the learning and teaching of programming, to improve the quality of learning and the student experience. Over the past three years we have used the contexts of robotics, computer games, and most recently a study of Abstract Art to this end. This paper discusses our motivation for using Abstract Art as a context, details our principles and methodology, and reports on an evaluation of the student experience. Our basic tenet is that one can view the works of artists such as Kandinsky, Klee and Malevich as Object-Oriented (OO) constructions. Discussion of these works can therefore be used to introduce OO principles, to explore the meaning of classes, methods and attributes and finally to synthesize new works of art through Java code. This research has been conducted during delivery of an “Advanced OOP (Java)” programming module at final-year Undergraduate level, and during a Masters’ OO-Programming (Java) module. This allows a comparative evaluation of novice and experienced programmers’ learning. In this paper, we identify several instructional factors which emerge from our approach, and reflect upon the associated pedagogy. A Catalogue of ArtApplets is provided at the associated web-site.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Master's)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Thesis (Ph.D.)--University of Washington, 2016-08

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Single Incision Laparoscopic Surgery (SILS) is a recent surgical technique, first described in the 1990s. Its aim is to optimize the esthetic result offered by laparoscopy by minimizing the number of abdominal incisions. Various preliminary studies have been carried out on the application of SILS, especially in cholecystectomy and appendectomy. This study evaluates the preliminary results of cholecystectomy by SILS (SILS™ Port) conducted between October 2009 and February 2011 on 21 patients (4 men and 17 women) with a mean age of 49.9 years and a mean Body Mass Index (BMI) of 22.8. All patients were treated by the same team, which had previously undergone six months’ simulator training. There were two main selection criteria, both evaluated intraoperatively: absence of adhesions and of significant inflammatory sequelae from previous cholecystitis; and suitable distance between gallbladder and SILS access port. Conversion to traditional laparoscopy was necessary in just two cases, while an accessory trocar was introduced in another two cases. Conversion to open surgery was not necessary in any case. One case of SILS cholecystectomy was complicated by postoperative bile leakage, which was treated conservatively, as the fistula had a low output. The mean duration of hospitalization was 3.6 days. This preliminary experience led us to conclude that SILS is safe and highly satisfactory in the postoperative phase, thanks to the reduced need for painkillers and the improved esthetic result.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last two decades have seen many exciting examples of tiny robots from a few cm3 to less than one cm3. Although individually limited, a large group of these robots has the potential to work cooperatively and accomplish complex tasks. Two examples from nature that exhibit this type of cooperation are ant and bee colonies. They have the potential to assist in applications like search and rescue, military scouting, infrastructure and equipment monitoring, nano-manufacture, and possibly medicine. Most of these applications require the high level of autonomy that has been demonstrated by large robotic platforms, such as the iRobot and Honda ASIMO. However, when robot size shrinks down, current approaches to achieve the necessary functions are no longer valid. This work focused on challenges associated with the electronics and fabrication. We addressed three major technical hurdles inherent to current approaches: 1) difficulty of compact integration; 2) need for real-time and power-efficient computations; 3) unavailability of commercial tiny actuators and motion mechanisms. The aim of this work was to provide enabling hardware technologies to achieve autonomy in tiny robots. We proposed a decentralized application-specific integrated circuit (ASIC) where each component is responsible for its own operation and autonomy to the greatest extent possible. The ASIC consists of electronics modules for the fundamental functions required to fulfill the desired autonomy: actuation, control, power supply, and sensing. The actuators and mechanisms could potentially be post-fabricated on the ASIC directly. This design makes for a modular architecture. The following components were shown to work in physical implementations or simulations: 1) a tunable motion controller for ultralow frequency actuation; 2) a nonvolatile memory and programming circuit to achieve automatic and one-time programming; 3) a high-voltage circuit with the highest reported breakdown voltage in standard 0.5 μm CMOS; 4) thermal actuators fabricated using CMOS compatible process; 5) a low-power mixed-signal computational architecture for robotic dynamics simulator; 6) a frequency-boost technique to achieve low jitter in ring oscillators. These contributions will be generally enabling for other systems with strict size and power constraints such as wireless sensor nodes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A fundamental problem in biology is understanding how and why things group together. Collective behavior is observed on all organismic levels - from cells and slime molds, to swarms of insects, flocks of birds, and schooling fish, and in mammals, including humans. The long-term goal of this research is to understand the functions and mechanisms underlying collective behavior in groups. This dissertation focuses on shoaling (aggregating) fish. Shoaling behaviors in fish confer foraging and anti-predator benefits through social cues from other individuals in the group. However, it is not fully understood what information individuals receive from one another or how this information is propagated throughout a group. It is also not fully understood how the environmental conditions and perturbations affect group behaviors. The specific research objective of this dissertation is to gain a better understanding of how certain social and environmental factors affect group behaviors in fish. I focus on two ecologically relevant decision-making behaviors: (i) rheotaxis, or orientation with respect to a flow, and (ii) startle response, a rapid response to a perceived threat. By integrating behavioral and engineering paradigms, I detail specifics of behavior in giant danio Devario aequipinnatus (McClelland 1893), and numerically analyze mathematical models that may be extended to group behavior for fish in general, and potentially other groups of animals as well. These models that predict behavior data, as well as generate additional, testable hypotheses. One of the primary goals of neuroethology is to study an organism's behavior in the context of evolution and ecology. Here, I focus on studying ecologically relevant behaviors in giant danio in order to better understand collective behavior in fish. The experiments in this dissertation provide contributions to fish ecology, collective behavior, and biologically-inspired robotics.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Inadequate final disposal of municipal solid waste (MSW) is associated with significant greenhouse gas (GHG) emission, environmental, health and safety issues, space consumption, public health and developmental issues in general. The environmental impact of waste is mostly felt in developing countries, inadequate waste management and treatment solution, inadequate policies and outdated practices are some of the factors leading to the significantly high final disposal of waste in dumps in developing countries. Brazil and other developing countries are changing the status quo by adopting polices that will adequately address this problem of inadequate waste management and disposal. Life cycle analysis (LCA) identifies the potential environmental impact of a product though environmental impact assessment, International Organization for Standardization (ISO) created the ISO 14040 and ISO 14044 to serve as principle guidelines for conducting LCA. Various waste treatment solution was applied to identify the waste management solution with the least Global warming potential (GWP) for treating the MSW generated from the city of Rio de Janerio, while reducing significantly final waste disposed in landfill.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Evolutionary robitics is a branch of artificial intelligence concerned with the automatic generation of autonomous robots. Usually the form of the robit is predefined an various computational techniques are used to control the machine's behaviour. One aspect is the spontaneous generation of walking in legged robots and this can be used to investigate the mechanical requiements for efficient walking in bipeds. This paper demonstrates a bipedal simulator that spontaneously generates walking and running gaits. The model can be customized to represent a range of hominoid morphologies and used to predict performance paramets such as preferred speed and metabolic energy cost. Because it does not require any motion capture data it is particularly suitable for investigating locomotion in fossil animals. The predictoins for modern humans are highly accurate in terms of energy cost for a given speend and thus the values predicted for other bipeds are likely to be good estimates. To illustrate this the cost of transport is calculated for Australopithecus afarensis. The model allows the degree of maximum extension at the knee to be varied causing the model to adopt walking gaits varying from chimpanzee-like to human=like. The energy costs associated with these gait choices can thus be calculated and this information used to evaluate possible locomotor strategies in early hominids

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the evolution of bipedalism among the homnoids in an ecological context we need to be able to estimate theenerrgetic cost of locomotion in fossil forms. Ideally such an estimate would be based entirely on morphology since, except for the rare instances where footprints are preserved, this is hte only primary source of evidence available. In this paper we use evolutionary robotics techniques (genetic algoritms, pattern generators and mechanical modeling) to produce a biomimentic simulation of bipedalism based on human body dimensions. The mechnaical simulation is a seven-segment, two-dimensional model with motive force provided by tension generators representing the major muscle groups acting around the lower-limb joints. Metabolic energy costs are calculated from the muscel model, and bipedal gait is generated using a finite-state pattern generator whose parameters are produced using a genetic algorithm with locomotor economy (maximum distance for a fixed energy cost) as the fitness criterion. The model is validated by comparing the values it generates with those for modern humans. The result (maximum efficiency of 200 J m-1) is within 15% of the experimentally derived value, which is very encouraging and suggests that this is a useful analytic technique for investigating the locomotor behaviour of fossil forms. Initial work suggests that in the future this technique could be used to estimate other locomotor parameters such as top speed. In addition, the animations produced by this technique are qualitatively very convincing, which suggests that this may also be a useful technique for visualizing bipedal locomotion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Capacity analysis using simulation is not a new thing in literature. Most of the development process of UMTS standardization have used simulation tools; however, we thing that the use of GIS planning tools and matrix manipulation capacity of MATLAB can show us different scenarios and make a more realistic analysis. Some work is been doing in COST 273 in order to have more realistic scenarios for UMTS planning. Our work initially was centered in uplink analysis, but we are now working in downlink analysis, specifically in two areas: capacity in number of users for RT and NRT services, and Node B power. In this work we will show results for up-link capacity and some results for downlink capacity and BS power consumption.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Jerne's idiotypic network theory postulates that the immune response involves inter-antibody stimulation and suppression as well as matching to antigens. The theory has proved the most popular Artificial Immune System (AIS) model for incorporation into behavior-based robotics but guidelines for implementing idiotypic selection are scarce. Furthermore, the direct effects of employing the technique have not been demonstrated in the form of a comparison with non-idiotypic systems. This paper aims to address these issues. A method for integrating an idiotypic AIS network with a Reinforcement Learning based control system (RL) is described and the mechanisms underlying antibody stimulation and suppression are explained in detail. Some hypotheses that account for the network advantage are put forward and tested using three systems with increasing idiotypic complexity. The basic RL, a simplified hybrid AIS-RL that implements idiotypic selection independently of derived concentration levels and a full hybrid AIS-RL scheme are examined. The test bed takes the form of a simulated Pioneer robot that is required to navigate through maze worlds detecting and tracking door markers.