995 resultados para Spin-projected calculations


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The energetics, lattice relaxation, and the defect-induced states of st single O vacancy in alpha-Al2O3 are studied by means of supercell total-energy calculations using a first-principles method based on density-functional theory. The supercell model with 120 atoms in a hexagonal lattice is sufficiently large to give realistic results for an isolated single vacancy (square). Self-consistent calculations are performed for each assumed configuration of lattice relaxation involving the nearest-neighbor Al atoms and the next-nearest-neighbor O atoms of the vacancy site. Total-energy data thus accumulated are used to construct an energy hypersurface. A theoretical zero-temperature vacancy formation energy of 5.83 eV is obtained. Our results show a large relaxation of Al (O) atoms away from the vacancy site by about 16% (8%) of the original Al-square (O-square) distances. The relaxation of the neighboring Al atoms has a much weaker energy dependence than the O atoms. The O vacancy introduces a deep and doubly occupied defect level, or an F center in the gap, and three unoccupied defect levels near the conduction band edge, the positions of the latter are sensitive to the degree of relaxation. The defect state wave functions are found to be not so localized, but extend up to the boundary of the supercell. Defect-induced levels are also found in the valence-band region below the O 2s and the O 2p bands. Also investigated is the case of a singly occupied defect level (an F+ center). This is done by reducing both the total number of electrons in the supercell and the background positive charge by one electron in the self-consistent electronic structure calculations. The optical transitions between the occupied and excited states of the: F and F+ centers are also investigated and found to be anisotropic in agreement with optical data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The magnetic properties of the Nd2Fe17-xSix intermetallic compounds are studied by means of spin-polarized supercell calculations in which the selected sites of substitution are close to the situations in real samples. It is shown that the average Fe moment increases with x and saturates near x = 3. This correlates quite well with the experimental dependence of Te on x. The difference between supercell and unit cell calculations are pointed out and the influence of Si atoms on the density of states of the nearby Fe atoms is emphasized. (C) 1997 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structure of EST-10, a member of synthetic microporous titanosilicates, was recently determined by an ingenious combination of experimental and simulational techniques. However, the locations of the alkali atoms in the framework remain elusive and its electronic structure is totally unknown. Based on first-principles local density calculations, the possible locations of the alkali atoms are identified and its electronic structure and bonding fully elucidated. ETS-10 is a semiconductor with a direct band gap of 2.33 eV. The Na atoms are likely to locate inside the seven-member ring pore adjacent to the one-dimensional Ti-O-Ti-O- chain.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The electronic structure and magnetism of eskolaite are studied by using first-principles calculations where the on-site Coulomb interaction and the exchange interaction are taken into account and the LSDA+U method is used.The calculated energies of magnetic configurations are very well fitted by the Heisenberg Hamiltonian with interactions in five neighbour shells; interaction with two nearest neighbours is found to be dominant. The Neel temperature is calculated in the spin-3/2 pair-cluster approximation. It is found that the measurements are in good agreement with for the values of U and J that are close to those obtained within the constrained occupation method.The band gap is of the Mott-Hubbard type.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Spin splitting of conduction subbands in Al_(0.3)Ga_(0.7)As/GaAs/Al_xGa_(1-x)As/Al_(0.3)Ga_(0.7)As step quantum wells induced by interface and electric field related Rashba effects is investigated theoretically by the method of finite difference. The dependence of the spin splitting on the electric field and the well structure, which is controlled by the well width and the step width, is investigated in detail. Without an external electric field, the spin splitting is induced by an in terface related Rashba term due to the built-in structure inversion asymmetry. Applying the external electric field to the step QW, the Rashba effect can be enhanced or weakened, depending on the well structure as well as the direction and the magnitude of the electric field. The spin splitting is mainly controlled by the interface related Rashba term under a negative and a stronger positive electric field, and the contribution of the electric field related Rashba term dominates in a small range of a weaker positive electric field.A method to determine the interface parameter is proposed.The results show that the step QWs might be used as spin switches.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclotron resonance (CR) of electrons in GaAs/AlGaAs quantum wells is investigated theoretically to explain a recent CR experiment, where two CR peaks were observed at high magnetic fields when both spin-up and spin-down states of the lowest Landau level are occupied. Our theoretical model takes into account the conduction band non-parabolicity, the electron bulk longitude-optic-phonon coupling, and the self-consistent subband structure. A good agreement is found.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based upon a hybrid ferromagnet/semiconductor structure consisting of two-dimensional electron gas and a pair of surface ferromagnetic stripes on top, we have theoretically investigated the effect of in-plane stray field omitted frequently in previous studies on the spin-dependent ballistic transport properties in hybrid structure. It is demonstrated here that, in combination with an external-controllable electrostatic modulation, the concerned structure shows a similar function as a lateral spin-polarized resonant tunneling device, where the strong spin-filtering effect occurs and nearly single-mode polarization is anticipated for the proper modulation. More importantly, the spin polarity of transmission electron can be easily transferred from one extreme to the other by switching the magnetization of stripes, showing the promising application as an efficient spin aligner in the developing semiconductor spintronics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spin splitting in GaN-based heterostructures has been investigated by means of circular photogalvanic effect experiments under uniaxial strain. The ratios of Rashba and Dresselhaus spin-orbit coupling coefficients (R/D ratios) have been measured in AlxGa1-xN/GaN heterostructures with various Al compositions. It is found that the R/D ratio increases from 4.1 to 19.8 with the Al composition of the AlxGa1-xN barrier varied from 15% to 36%. The Dresselhaus coefficient of bulk GaN is experimentally obtained to be 0.4 eV angstrom(3). The results indicate that the spin splitting in GaN-based heterostructures can be modulated effectively by the polarization-induced electric fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We theoretically study the electronic structure, spin splitting, effective mass, and spin orientation of InAs nanowires with cylindrical symmetry in the presence of an external electric field and uniaxial stress. Using an eight-band k center dot p theoretical model, we deduce a formula for the spin splitting in the system, indicating that the spin splitting under uniaxial stress is a nonlinear function of the momentum and the electric field. The spin splitting can be described by a linear Rashba model when the wavevector and the electric field are sufficiently small. Our numeric results show that the uniaxial stress can modulate the spin splitting. With the increase of wavevector, the uniaxial tensile stress first restrains and then amplifies the spin splitting of the lowest electron state compared to the no strain case. The reverse is true under a compression. Moreover, strong spin splitting can be induced by compression when the top of the valence band is close to the bottom of the conductance band, and the spin orientations of the electron stay almost unchanged before the overlap of the two bands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electron spin relaxation and related mechanisms in heavily Mn-doped (Ga,Mn) As are studied by performing time-resolved magneto-optical Kerr effect measurements. At low temperature, s-d exchange scattering dominates electron spin relaxation, whereas the Bir-Aronov-Pikus mechanism and Mn impurity scattering play important roles at high temperature. The temperature-dependent spin relaxation time exhibits an anomaly around the Curie temperature (T(c)) that implies that thermal fluctuation is suppressed by short-range correlated spin fluctuation above T(c). (C) 2010 American Institute of Physics. [doi:10.1063/1.3531754]