919 resultados para Spin components


Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new expression for the spin connection of teleparallel gravity is proposed, given by minus the contorsion tensor plus a zero connection. The corresponding minimal coupling is covariant under local Lorentz transformation, and equivalent to the minimal coupling prescription of general relativity. With this coupling prescription, therefore, teleparallel gravity turns out to be fully equivalent to general relativity, even in the presence of spinor fields.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Starting from a phenomenological Hamiltonian originally written in terms of angular momentum operators we derive a new quantum angle-based Hamiltonian that allows for a discussion on the quantum spin tunneling. The study of the applicability of the present approach, carried out in calculations with a soluble quasi-spin model, shows that we are allowed to use our method in the description of physical systems such as the Mn12-acetate molecule, as well as the octanuclear iron cluster, Fe8, in a reliable way. With the present description the interpretation of the spin tunneling is seen to be direct, the spectra and energy barriers of those systems are obtained, and it is shown that they agree with the experimental ones. (c) 2006 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Investigation of the spacelike and timelike electromagnetic form factors of hadrons, within a relativistic microscopical model characterized by a small set of hypothesis, could shed light on the components of hadron states beyond the valence one. Our relativistic approach has been successfully applied first to the pion and then the extension to the nucleon has been undertaken. The pion case is shortly reviewed as an illustrative example for introducing the main ingredients of our approach, and preliminary results for the nucleon in the spacelike range -10 (GeV/c)(2) <= q(2) <= 0 are evaluated.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Up to now, the only known exact Foldy-Wouthuysen transformation (FWT) in curved space is that concerning Dirac particles coupled to static spacetime metrics. Here we construct the exact FWT related to a real spin-0 particle for the aforementioned spacetimes. This exact transformation exists independently of the value of the coupling between the scalar field and gravity. Moreover, the gravitational Darwin term written for the conformal coupling is one-third of the corresponding term in the fermionic case. There are some arguments in the literature that seem to favor the choice lambda=1/6. We rehearse a number of claims of these works.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The frame and scale dependence of the pair-term contribution to the electromagnetic form factor of a spin-zero composite system of two-fermions is studied within the Light Front. The form factor is evaluated from the plus-component of the current in the Breit frame, using for the first time a nonconstant, symmetric ansatz for the Bethe-Salpeter amplitude. The frame dependence is analyzed by allowing a nonvanishing plus component of the momentum transfer, while the dynamical scale is set by the masses of the constituents and by mass and size of the composite system. A transverse momentum distribution, associated with the Bethe-Salpeter amplitude, is introduced which allows to define strongly and weakly relativistic systems. In particular, for strongly relativistic systems, the pair term vanishes for the Drell-Yan condition, while is dominant for momentum transfer along the light-front direction. For a weakly relativistic system, fitted to the deuteron scale, the pair term is negligible up to momentum transfers of 1 (GeV/c)(2). A comparison with results obtained within the Front-Form Hamiltonian dynamics with a fixed number of constituents is also presented. (C) 2002 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new approach to the description of a spin-2 particle in flat and curved spacetime is developed on the basis of the teleparallel gravity theory. We show that such an approach is in fact a true and natural framework for the Fierz representation proposed recently by Novello and Neves. More specifically, we demonstrate how the teleparallel theory fixes uniquely the structure of the Fierz tensor, discover the transparent origin of the gauge symmetry of the spin-2 model, and derive the linearized Einstein operator from the fundamental identity of the teleparallel gravity. In order to cope with the consistency problem on the curved spacetime, similarly to the usual Riemannian approach, one needs to include the nonminimal (torsion dependent) coupling terms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In reply to the criticism made by Mielke in the preceding Comment on our recent paper, we once again explicitly demonstrate the inconsistency of the coupling of a Dirac field to gravitation in the teleparallel equivalent of general relativity. Moreover, we stress that the mentioned inconsistency is generic for all sources with spin and is by no means restricted to the Dirac field. In this sense the SL(4,R)-covariant generalization of the spinor fields in the teleparallel gravity theory is irrelevant to the inconsistency problem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A unified description of spacelike and timelike hadron form factors within a light-front model was successfully applied to the pion. The model is extended to the nucleon to study the role of qq pair production and of nonvalence components in the nucleon form factors. Preliminary results in the spacelike range 0 <= Q(2) <= 10 (GeV/c)(2) are presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The discrete phase space approach to quantum mechanics of degrees of freedom without classical counterparts is applied to the many-fermions/quasi-spin Lipkin model. The Wi:ner function is written for some chosen states associated to discrete angle and angular momentum variables, and the rime evolution is numerically calculated using the discrete von Neumnnn-Liouville equation. Direct evidences in the lime evolution of the Wigner function are extracted that identify a tunnelling effect. A connection with a SU(2)-based semiclassical continuous approach to the Lipkin model is also presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Quark-model descriptions of the nucleon-nucleon interaction contain two main ingredients, a quark-exchange mechanism for the short-range repulsion and meson exchanges for the medium- and long-range parts of the interaction. We point out the special role played by higher partial waves, and in particular the (1)F(3), as a very sensitive probe for the meson-exchange pan employed in these interaction models. In particular, we show that the presently available models fail to provide a reasonable description of higher partial waves and indicate the reasons for this shortcoming.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

For m(2) < a(2) + q(2), with m, a, and q respectively the source mass, angular momentum per unit mass, and electric charge, the Kerr-Newman (KN) solution of Einstein's equation reduces to a naked singularity of circular shape, enclosing a disk across which the metric components fail to be smooth. By considering the Hawking and Ellis extended interpretation of the KN spacetime, it is shown that, similarly to the electron-positron system, this solution presents four inequivalent classical states. Making use of Wheeler's idea of charge without charge, the topological structure of the extended KN spatial section is found to be highly non-trivial, leading thus to the existence of gravitational states with half-integral angular momentum. This property is corroborated by the fact that, under a rotation of the space coordinates, those inequivalent states transform into themselves only after a 4π rotation. As a consequence, it becomes possible to naturally represent them in a Lorentz spinor basis. The state vector representing the whole KN solution is then constructed, and its evolution is shown to be governed by the Dirac equation. The KN solution can thus be consistently interpreted as a model for the electron-positron system, in which the concepts of mass, charge and spin become connected with the spacetime geometry. Some phenomenological consequences of the model are explored.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We propose an approach which allows one to construct and use a potential function written in terms of an angle variable to describe interacting spin systems. We show how this can be implemented in the Lipkin-Meshkov-Glick, here considered a paradigmatic spin model. It is shown how some features of the energy gap can be interpreted in terms of a spin tunneling. A discrete Wigner function is constructed for a symmetric combination of two states of the model and its time evolution is obtained. The physical information extracted from that function reinforces our description of phase oscillations in a potential. (c) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The simultaneous investigation of the pion electromagnetic form factor in the space- and timelike regions within a light-front model allows one to address the issue of nonvalence components of the pion and photon wave functions. Our relativistic approach is based on a microscopic vector-meson-dominance model for the dressed vertex where a photon decays in a quark-antiquark pair, and on a simple parametrization for the emission or absorption of a pion by a quark. The results show an excellent agreement in the space like region up to -10 (GeV/c)(2), while in timelike region the model produces reasonable results up to 10 (GeV/c)(2).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Based on the accretion-induced magnetic field decay model, in which a frozen field and an incompressible fluid are assumed, we obtain the following results: (1) an analytic relation between the magnetic field and spin period, if the fastness parameter of the accretion disk is neglected (The evolutionary tracks of accreting neutron stars in the P-B diagram in our model are different from the equilibrium period lines when the influence of the fastness parameter is taken into account.); (2) the theoretical minimum spin period of an accreting neutron star is max(1.1ms (DeltaM/M(circle dot))(-1)R(6)(-5/14) I(45)(M/M(circle dot))(-1/2),1.1ms (M/M(circle dot))(-1/2) R(6)(17/14)), independent of the accretion rate (X-ray luminosity) but dependent on the total accretion mass, DeltaM; however, the minimum magnetic field depends on the accretion rate; (3) the magnetic field strength decreases faster with time than does the period.