931 resultados para Spectral Element Method
Resumo:
A mathematical model of the chemical kinetics of silicone rubber Vulcanization is developed, with the thermal effects being computed using the increment method, and the hot Vulcanization process estimated with the finite element method. The results show that the reaction heat of rubber vulcanization is important for energy saving, and that a proper curing medium temperature is important when considering both vulcanization efficiency and vulcanizate uniformity. The results also indicate that increases in the forced convective heat transfer coefficient have no significant effect above a certain level. The validity of the numerical model is indirectly proven by comparison with existing data.
Resumo:
Reactive mold filling is one of the important stages in resin transfer molding processes, in which resin curing and edge effects are important characteristics. On the basis of previous work, volume-averaging momentum equations involving viscous and inertia terms were adopted to describe the resin flow in fiber preform, and modified governing equations derived from the Navier-Stokes equations are introduced to describe the resin flow in the edge channel. A dual-Arrhenius viscosity model is newly introduced to describe the chemorheological behavior of a modified bismaleimide resin. The influence of the curing reaction and processing parameters on the resin flow patterns was investigated.
Resumo:
On the basis of the quantitative relationship among rubber processing, structure and property, the methodology of the integrated processing-structure-property analysis on rubber in-mold vulcanization is presented, and then the temporal evolution and spatial distribution characteristics of silicone rubber hot processing parameters, crosslinking structure parameters and mechanical property parameters are obtained by means of the finite element method. The present work is helpful for optimizing curing conditions, and then the design of rubber vulcanization processes according to certain requirements can be done.
Resumo:
Gelatin is widely used in food, pharmaceutical, and photographic industries due to the coil-helix transition, whereas the structural inhomogeneity considerably affects its essential properties closely connecting with the industrial applications. The spatially structural inhomogeneity of the gelatin caused by the uneven and unstable temperature field is analyzed by the finite element method during the cooling-induced coil-helix transition process. The helix conversion and the crosslinking density as functions of time and spatial grid are calculated by the incremental method. A length distribution density function is introduced to describe the continuous length distributions of two kinds of triple helices.
Resumo:
The Sr3Al2O5Cl2:Ce3+,Eu2+ phosphors were prepared by solid state reaction. The obtained phosphors exhibit a strong absorption in the UV-visible region and have two intense emission bands at 444 and 609 nm. The energy transfer from the Ce3+ to Eu2+ ions was observed, and the critical distance has been estimated to be about 24.5 A by spectral overlap method. Furthermore, the developed phosphors can generate lights from yellow-to-white region under the excitation of UV radiation by appropriately tuning the activator content, indicating that they have potential applications as an UV-convertible phosphor for white light emitting diodes.
Resumo:
The damage evolution of fiber-reinforced polypropylene-matrix composites with matrix defects was studied via a Monte Carlo technique combined with a finite element method. A finite element model was constructed to predict the effects of various matrix defect shapes on the stress distributions. The results indicated that a small matrix defect had almost no effect on fiber stress distributions other than interfacial shear stress distributions. Then, a finite element model with a statistical distribution of the fiber strength was constructed to investigate the influences of the spatial distribution and the volume fraction of matrix defects on composite failure. The results showed that it was accurate to use the shear-lag models and Green's function methods to predict the tensile strength of composites even though the axial stresses in the matrix were neglected.
Resumo:
The explicit expression between composition and mechanical properties of silicone rubber was derived from the physics of polymer elasticity, the implicit expression among material composition, reaction conditions and reaction efficiency was obtained from chemical thermodynamics and kinetics, and then an implicit multi-objective optimization model was constructed. Genetic algorithm was applied to optimize material composition and reaction conditions, and the finite element method of cross-linking reaction processes was used to solve multi-objective functions, on the basis of which a new optimization methodology of crosslinking reaction processes was established. Using this methodology, rubber materials can be designed according to pre-specified requirements.
Resumo:
The stress transfer from broken fibers to unbroken fibers in fiber-reinforced thermosetting polymer-matrix composites and thermoplastic polymer-matrix composites was studied using a detailed finite element model. In order to check the validity of this approach, an epoxy-matrix monolayer composite was used as thermosetting polymer-matrix composite and a polypropylene (PP)-matrix monolayer composite was used as thermoplastic polymer-matrix composite, respectively. It is found that the stress concentrations near the broken fiber element cause damage to the neighboring epoxy matrix prior to the breakage of other fibers, whereas in the case of PP-matrix composites the fibers nearest to the broken fiber break prior to the PP matrix damage, because the PP matrix around the broken fiber element yields. In order to simulate composite damage evolution, a Monte Carlo technique based on a finite element method has been developed in the paper. The finite element code coupled with statistical model of fiber strength specifically written for this problem was used to determine the stress redistribution. Five hundred samples of numerical simulation were carried out to obtain statistical deformation and failure process of composites with fixed fiber volume fraction.
Resumo:
Wave generation by the falling rock in the two-dimensional wave tank is experimentally and numerically studied, where the numerical model utilizes the boundary element method to solve the fully nonlinear potential flow theory. The wave profiles at different times are measured in the laboratory, which are also used to test the numerical model. Comparisons show that the experimental and numerical results are in good agreement, and the numerical model can be used to simulate the wave generation due to the submarine rock falling. Further numerical tests on the influences of the rock size, density, initial position and the falling angle on the wave elevation of the generated waves are performed, respectively. The results show that the size and density of the rock have strong effects on the maximum elevation of the generated wave, while the effects of the initial position and the falling angle of the rock are also significant. When the size or the density of the rock increases, the maximum elevation of the generated wave increases. The same effect on the generated wave would be produced if the initial position of the rock becomes closer to the surface, or the falling angle between the falling route and the vertical direction turns larger. In addition, the present numerical tests reveal that the submarine rock falling provides a new generation method for the breaking wave in the wave tank.
Resumo:
Waves generated by vertical seafloor movements are simulated by use of a fully nonlinear two-dimensional numerical wave tank. In the source region, the seafloor lifts to a designated height by a generation function. The numerical tests show that file linear theory is only valid for estimating the wave behaviors induced by the seafloor movements with a small amplitude, and the fully nonlinear numerical model should be adopted in the simulation of the wave generation by the large amplitude seafloor movements. Without the background surface waves, many numerical tests on the stable maximum elevations eta(max)(0) are carried out by both the linear theory and the fully nonlinear model. The results of two models are compared and analyzed. For the fully nonlinear model, the influences of the amplitudes and the horizontal lengths on eta(max)(0) are stronger than that of the characteristic duration times. Furthermore, results reveal that there are significant differences between the linear theory and the fully nonlinear model. When the influences of the background surface waves are considered, the corresponding numerical analyses reveal that with the fully nonlinear model the eta(max)(0) near-linearly varies with the wave amplitudes of the surface waves, and the eta(max)(0) has significant dependences on the wave lengths and the wave phases of the surface waves. In addition, the differences between the linear theory and the fully nonlinear model are still obvious, aid these differences are significantly affected by The wave parameters of the background surface waves, such as the wave amplitude, the wave length and the wave phase.
Resumo:
随着人们对能源需求的不断增加,深海海洋油气开发已引起了人们越来越大的兴趣,随之而来的是对海洋构筑物的设计和防护提出了更高的要求。由于在传统的阴极保护工程设计中,大多采用实际测量或经验估计的方法来掌握电位分布规律,很难真实的反映构筑物的实际状态,为了确保安全,往往采用较大的安全系数,不但会造成金属材料的浪费,而且还会在构筑物的局部造成保护不足或过保护。 本文研究了边界元方法(BEM)利用数值仿真技术对阴极保护状态下的海洋构筑物的保护状态进行模拟,从而获得阴极保护状态下的金属材料的电位分布。采用常数单元对于二维问题进行了研究,推导出了边界积分方程的离散化形式,并结合阴极保护环境下的阳极和阴极的极化曲线作为边界条件,建立了线性方程组。采用Newton-Raphson 迭代法和分段拟线性化的方法对边界条件做了线性化处理,应用FORTRAN语言开发出阴极保护的边界元仿真求解程序CPBEM,并利用该程序选择合适的算例进行了验证,结果表明该程序是有效和可行的。 通过管线钢在不同温度海泥埋片的腐蚀失重实验,证明了如果有充足的氧的供给的情况下,温度每增加10oC,腐蚀速度便增加一倍。阴极保护系统数值仿真的精确度最主要的影响因素就是阴极和阳极的极化曲线。而金属材料的极化曲线往往受到多种环境因素的影响,本文系统的讨论了在海泥介质中两种管线钢的腐蚀行为,对管线钢极化行为产生影响的各种环境因素,以及这些因素与金属的腐蚀速度之间的关系。首次将灰关联分析的手段运用到海泥介质的腐蚀,研究了环境因素对于ERW,SML两种管线钢在海泥中的腐蚀速率的影响。
Resumo:
在带式输送机动态过程仿真的基础上 ,以多驱动带式输送机系统为对象 ,对可控多驱动系统进行动力学分析·采用基于功率跟踪的方法 ,在合理的启动曲线的基础上 ,将第一驱动按合理启动曲线启动 ,其他驱动顺次跟踪第一驱动功率的控制策略·基于有限元方法建立了系统的动力学方程 ,提出了可控启动过程的动态分析算法 ,开发了动态设计软件BCD 2 0 ,通过对实际系统的仿真 ,证明了算法和软件的正确性·
Resumo:
针对水下攻泥机器人蠕动爬行攻泥机构的结构与工作机理,建立了适当的有限元计算模型,进而通过弹塑性有限元计算,分析了攻泥机构直行攻泥时与土相互作用的工作特性,阐明了攻泥机构在前进过程中限位块导致的土体局部弱化区对其工作特性的影响程度.综合分析计算与模型试验结果,建议了攻泥机构宜行攻泥所必须的条件.
Resumo:
对龙门式直角坐标机器人的核心部件-Y轴横梁进行了有限元计算和分析。首先对直角坐标机器人的Y轴横梁进行建模,利用ANSYS软件分析计算出横梁的变形分布情况,然后对其分布规律做简要的分析,为后续的横梁结构优化设计提供理论依据。
Resumo:
On the basis of analyzing the principle and realization of geo-steering drilling system, the key technologies and methods in it are systematically studied in this paper. In order to recognize lithology, distinguish stratum and track reservoirs, the techniques of MWD and data process about natural gamma, resistivity, inductive density and porosity are researched. The methods for pre-processing and standardizing MWD data and for converting geological data in directional and horizontal drilling are discussed, consequently the methods of data conversion between MD and TVD and those of formation description and adjacent well contrast are proposed. Researching the method of identifying sub-layer yields the techniques of single well explanation, multi-well evaluation and oil reservoir description. Using the extremum and variance clustering analysis realizes logging phase analysis and stratum subdivision and explanation, which provides a theoretical method and lays a technical basis for tracing oil reservoirs and achieving geo-steering drilling. Researching the technique for exploring the reservoir top with a holdup section provides a planning method of wellpath control scheme to trace oil and gas reservoir dynamically, which solves the problem of how to control well trajectory on condition that the layer’s TVD is uncertain. The control scheme and planning method of well path for meeting the demands of target hitting, soft landing and continuous steering respectively provide the technological guarantee to land safely and drill successfully for horizontal, extended-reach and multi-target wells. The integrative design and control technologies are researched based on geology, reservoir and drilling considering reservoir disclosing ratio as a primary index, and the methods for planning and control optimum wellpath under multi-target restriction, thus which lets the target wellpath lie the favorite position in oil reservoir during the process of geo-steering drilling. The BHA (bottomhole assembly) mechanical model is discussed using the finite element method, and the BHA design methods are given on the basis of mechanical analyses according to the shape of well trajectory and the characteristics of BHA’s structure and deformation. The methods for predicting the deflection rate of bent housing motors and designing their assemblies are proposed based on the principle of minimum potential energy, which can clearly show the relation between the BHA’s structure parameters and deflection rate, especially the key factors’ effect to the deflection rate. Moreover, the interaction model between bit and formation is discussed through the process of equivalent formation and equivalent bit considering the formation anisotropy and bit anisotropy on the basis of analyzing the influence factors of well trajectory. Accordingly, the inherence relationship among well trajectory, formation, bit and drilling direction is revealed, which lays the theory basis and technique for predicting and controlling well trajectory.