980 resultados para Spatial Dependence
Resumo:
One of the long standing problems in quantum chemistry had been the inability to exploit full spatial and spin symmetry of an electronic Hamiltonian belonging to a non-Abelian point group. Here, we present a general technique which can utilize all the symmetries of an electronic (magnetic) Hamiltonian to obtain its full eigenvalue spectrum. This is a hybrid method based on Valence Bond basis and the basis of constant z-component of the total spin. This technique is applicable to systems with any point group symmetry and is easy to implement on a computer. We illustrate the power of the method by applying it to a model icosahedral half-filled electronic system. This model spans a huge Hilbert space (dimension 1,778,966) and in the largest non-Abelian point group. The C60 molecule has this symmetry and hence our calculation throw light on the higher energy excited states of the bucky ball. This method can also be utilized to study finite temperature properties of strongly correlated systems within an exact diagonalization approach. (C) 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Resumo:
The change in thermodynamic quantities (e. g., entropy, specific heat etc.) by the application of magnetic field in the case of the high-T-c superconductor YBCO system is examined phenomenological by the Ginzburg-Landau theory of anisotropic type-II superconductors. An expression for the change in the entropy (Delta S) and change in specific heat (Delta C) in a magnetic field for any general orientation of an applied magnetic field B-a with respect to the crystallographic c-axis is obtained. The observed large reduction of specific heat anomaly just below the superconducting transition and the observed variation of entropy with magnetic field are explained quantitatively.
Resumo:
During V(D)J recombination, RAG (recombination-activating gene) complex cleaves DNA based on sequence specificity. Besides its physiological function, RAG has been shown to act as a structure-specific nuclease. Recently, we showed that the presence of cytosine within the single-stranded region of heteroduplex DNA is important when RAGs cleave on DNA structures. In the present study, we report that heteroduplex DNA containing a bubble region can be cleaved efficiently when present along with a recombination signal sequence (RSS) in cis or trans configuration. The sequence of the bubble region influences RAG cleavage at RSS when present in cis. We also find that the kinetics of RAG cleavage differs between RSS and bubble, wherein RSS cleavage reaches maximum efficiency faster than bubble cleavage. In addition, unlike RSS, RAG cleavage at bubbles does not lead to cleavage complex formation. Finally, we show that the ``nonamer binding region,'' which regulates RAG cleavage on RSS, is not important during RAG activity in non-B DNA structures. Therefore, in the current study, we identify the possible mechanism by which RAG cleavage is regulated when it acts as a structure-specific nuclease. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
In this paper we report resonance Raman scattering from graphite covering excitation energies in the range 2.4 eV to 6 eV. The Raman excitation profile shows a maximum at 4.94 eV (lambda = 251nm) for the G - band (1582 cm(-1)). The D-band at similar to 1350 cm(-1), attributed to disorder activated Raman scattering, does not show up in Raman spectra recorded with excitation wavelengths smaller than 257.3 nm, revealing that the resonance enhancements of the G and D-modes are widely different. Earlier Raman measurements in carbon materials have also revealed a very large and unusual dependence of the D - mode frequency on excitation laser wavelength. This phenomenon is also observed in carbon nanotubes. In this paper we show for the first time that the above unusual dependence arises from the disorder - induced double resonance mechanism.
Resumo:
Studies on the diffusion of methane in a zeolite structure type LTA (as per IZA nomenclature) have indicated that different types of methane zeolite potentials exist in the literature in which methane is treated within the united-atom model. One set of potentials, referred to as model A, has a methane oxygen diameter of 3.14 angstrom, while another set of potential parameters, model B, employs a larger value of 3.46 angstrom. Fritzsche and co-workers (1993) have shown that these two potentials lead to two distinctly different energetic barriers for the passage of methane through the eight-ring window in the cation-free form of zeolite A. Here, we compute the variation of the self-diffusivity (D) with loading (c) for these two types of potentials and show that this slight variation in the diameter changes the concentration dependence qualitatively: thus, D decreases monotonically with c for model A, while D increases and goes through a maximum before finally decreasing for model B. This effect and the surprising congruence of the diffusion coefficients for both models at high loadings is examined in detail at the molecular level. Simulations for different temperatures reveal the Arrhenius behaviour of the self-diffusion coefficient. The apparent activation energy is found to vary with the loading. We conclude that beside the cage-to-cage jumps, which are essential for the migration of the guest molecules, at high concentrations migration within the cage and guest guest interactions with other molecules become increasingly dominant influences on the diffusion coefficient and make the guest zeolite interaction less important for both model A and model B.
Resumo:
Experimental studies have observed significant changes in both structure and function of lysozyme (and other proteins) on addition of a small amount of dimethyl sulfoxide (DMSO) in aqueous solution. Our atomistic molecular dynamic simulations of lysozyme in water-DMSO reveal the following sequence of changes on increasing DMSO concentration. (i) At the initial stage (around 5% DMSO concentration) protein's conformational flexibility gets markedly suppressed. From study of radial distribution functions, we attribute this to the preferential solvation of exposed protein hydrophobic residues by the methyl groups of DMSO. (ii) In the next stage (10-15% DMSO concentration range), lysozome partially unfolds accompanied by an increase both in fluctuation and in exposed protein surface area. (iii) Between 15-20% concentration ranges, both conformational fluctuation and solvent accessible protein surface area suddenly decrease again indicating the formation of an intermediate collapse state. These results are in good agreement with near-UV circular dichroism (CD) and fluorescence studies. We explain this apparently surprising behavior in terms of a structural transformation which involves clustering among the methyl groups of DMSO. (iv) Beyond 20% concentration of DMSO, the protein starts its final sojourn towards the unfolding state with further increase in conformational fluctuation and loss in native contacts. Most importantly, analysis of contact map and fluctuation near the active site reveal that both partial unfolding and conformational fluctuations are centered mostly on the hydrophobic core of active site of lysozyme. Our results could offer a general explanation and universal picture of the anomalous behavior of protein structure-function observed in the presence of cosolvents (DMSO, ethanol, tertiary butyl alcohol, dioxane) at their low concentrations. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.3694268]
Resumo:
Black carbon aerosols absorb solar radiation and decrease planetary albedo, and thus can contribute to climate warming. In this paper, the dependence of equilibrium climate response on the altitude of black carbon is explored using an atmospheric general circulation model coupled to a mixed layer ocean model. The simulations model aerosol direct and semi-direct effects, but not indirect effects. Aerosol concentrations are prescribed and not interactive. It is shown that climate response of black carbon is highly dependent on the altitude of the aerosol. As the altitude of black carbon increases, surface temperatures decrease; black carbon near the surface causes surface warming, whereas black carbon near the tropopause and in the stratosphere causes surface cooling. This cooling occurs despite increasing planetary absorption of sunlight (i.e. decreasing planetary albedo). We find that the trend in surface air temperature response versus the altitude of black carbon is consistent with our calculations of radiative forcing after the troposphere, stratosphere, and land surface have undergone rapid adjustment, calculated as ``regressed'' radiative forcing. The variation in climate response from black carbon at different altitudes occurs largely from different fast climate responses; temperature dependent feedbacks are not statistically distinguishable. Impacts of black carbon at various altitudes on the hydrological cycle are also discussed; black carbon in the lowest atmospheric layer increases precipitation despite reductions in solar radiation reaching the surface, whereas black carbon at higher altitudes decreases precipitation.
Resumo:
Investigations into the variation of self-diffusivity with solute radius, density, and degree of disorder of the host medium is explored. The system consists of a binary mixture of a relatively smaller sized solute, whose size is varied and a larger sized solvent interacting via Lennard-Jones potential. Calculations have been performed at three different reduced densities of 0.7, 0.8, and 0.933. These simulations show that diffusivity exhibits a maximum for some intermediate size of the solute when the solute diameter is varied. The maximum is found at the same size of the solute at all densities which is at variance with the prediction of the levitation effect. In order to understand this anomaly, additional simulations were carried out in which the degree of disorder has been varied while keeping the density constant. The results show that the diffusivity maximum gradually disappears with increase in disorder. Disorder has been characterized by means of the minimal spanning tree. Simulations have also been carried out in which the degree of disorder is constant and only the density is altered. The results from these simulations show that the maximum in diffusivity now shifts to larger distances with decrease in density. This is in agreement with the changes in void and neck distribution with density of the host medium. These results are in excellent agreement with the predictions of the levitation effect. They suggest that the effect of disorder is to shift the maximum in diffusivity towards smaller solute radius while that of the decrease in density is to shift it towards larger solute radius. Thus, in real systems where the degree of disorder is lower at higher density and vice versa, the effect due to density and disorder have opposing influences. These are confirmed by the changes seen in the velocity autocorrelation function, self part of the intermediate scattering function and activation energy. (C) 2012 American Institute of Physics. http://dx.doi.org/10.1063/1.3701619]
Resumo:
Thin films were thermally evaporated from the bulk glasses of As40Se60-xSbx (with x = 0, 5, 10, 15 at.%) under high vacuum. We have characterized the deposited films by Fourier Transform Infrared spectroscopy. The relationship between the structural and optical properties and the compositional variation has been investigated. Increasing Sb content was found to affect the thermal and optical properties of these films. Non-direct electronic transition was found to be responsible for the photon absorption inside the investigated films. It was found that, the optical band gap E-o decreases while the width of localized states (Urbach energy) E-e increases. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Ultrahigh-molecular-weight polyethylene (UHMWPE) is used as an articulating surface in total hip and knee joint replacement. In order to enhance long-term durability/wear resistance properties, UHMWPE-based polymer-ceramic hybrid composites are being developed. Surface properties such as wettability and protein adsorption alter with reinforcement or with change in surface chemistry. From this perspective, the wettability and protein adsorption behavior of compression-molded UHMWPE-hydroxyapatite (HA)-aluminum oxide (Al2O3)-carbon nanotube (CNT) composites were analyzed in conjunction with surface roughness. The combined effect of Al2O3 and CNT shows enhancement of the contact angle by similar to 37A degrees compared with the surface of the UHMWPE matrix reinforced with HA. In reference to unreinforced UHMWPE, protein adsorption density also increased by similar to 230% for 2 wt.%HA-5 wt.%Al2O3-2 wt.%CNT addition to UHMWPE. An important conclusion is that the polar and dispersion components of the surface free energy play a significant role in wetting and protein adsorption than do the total free energy or chemistry of the surface. The results of this study have major implications for the biocompatibility of these newly developed biocomposites.
Resumo:
The n-type GaN layers were grown by plasma-assisted MBE and either intentionally doped with Si or unintentionally doped. The optical characteristics of a donor level in Si-doped, GaN were studied in terms of photoluminescence (PL) spectroscopy as a function of electron concentration. Temperature dependent PL measurements allowed us to estimate the activation energy of a Si-related donor from temperature-induced decay of PL intensity. PL peak positions, full width at half maximum of PL and activation energies are found to be proportional to the cube root of carrier density. The involvement of donor levels is supported by the temperature-dependent electron concentration measurements. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Urbanisation is a dynamic complex phenomenon involving large scale changes in the land uses at local levels. Analyses of changes in land uses in urban environments provide a historical perspective of land use and give an opportunity to assess the spatial patterns, correlation, trends, rate and impacts of the change, which would help in better regional planning and good governance of the region. Main objective of this research is to quantify the urban dynamics using temporal remote sensing data with the help of well-established landscape metrics. Bangalore being one of the rapidly urbanising landscapes in India has been chosen for this investigation. Complex process of urban sprawl was modelled using spatio temporal analysis. Land use analyses show 584% growth in built-up area during the last four decades with the decline of vegetation by 66% and water bodies by 74%. Analyses of the temporal data reveals an increase in urban built up area of 342.83% (during 1973-1992), 129.56% (during 1992-1999), 106.7% (1999-2002), 114.51% (2002-2006) and 126.19% from 2006 to 2010. The Study area was divided into four zones and each zone is further divided into 17 concentric circles of 1 km incrementing radius to understand the patterns and extent of the urbanisation at local levels. The urban density gradient illustrates radial pattern of urbanisation for the period 1973-2010. Bangalore grew radially from 1973 to 2010 indicating that the urbanisation is intensifying from the central core and has reached the periphery of the Greater Bangalore. Shannon's entropy, alpha and beta population densities were computed to understand the level of urbanisation at local levels. Shannon's entropy values of recent time confirms dispersed haphazard urban growth in the city, particularly in the outskirts of the city. This also illustrates the extent of influence of drivers of urbanisation in various directions. Landscape metrics provided in depth knowledge about the sprawl. Principal component analysis helped in prioritizing the metrics for detailed analyses. The results clearly indicates that whole landscape is aggregating to a large patch in 2010 as compared to earlier years which was dominated by several small patches. The large scale conversion of small patches to large single patch can be seen from 2006 to 2010. In the year 2010 patches are maximally aggregated indicating that the city is becoming more compact and more urbanised in recent years. Bangalore was the most sought after destination for its climatic condition and the availability of various facilities (land availability, economy, political factors) compared to other cities. The growth into a single urban patch can be attributed to rapid urbanisation coupled with the industrialisation. Monitoring of growth through landscape metrics helps to maintain and manage the natural resources. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Mechanical properties of ZnS nanowires and thin films are studied as a function of size and growth direction using all-atom molecular dynamics simulations. Using the stress-strain relationship we extract Young's moduli of nanowires and thin films at room temperature. Our results show that Young's modulus of 0001] nanowires has strong size dependence. On the other hand, 01 (1) over bar0] nanowires do not exhibit a strong size dependence of Young's modulus in the size range we have investigated. We provide a microscopic understanding of this behavior on the basis of bond stretching and contraction due to the rearrangement of atoms in the surface layers. The ultimate tensile strengths of the nanowires do not show much size dependence. To investigate the mechanical behavior of ZnS in two dimensions, we calculate Young's modulus of thin films under tensile strain along the 0001] direction. Young's modulus of thin films converges to the bulk value more rapidly than that of the 0001] nanowire.
Resumo:
The Adam-Gibbs relation between relaxation times and the configurational entropy has been tested extensively for glass formers using experimental data and computer simulation results. Although the form of the relation contains no dependence on the spatial dimensionality in the original formulation, subsequent derivations of the Adam-Gibbs relation allow for such a possibility. We test the Adam-Gibbs relation in two, three, and four spatial dimensions using computer simulations of model glass formers. We find that the relation is valid in three and four dimensions. But in two dimensions, the relation does not hold, and interestingly, no single alternate relation describes the results for the different model systems we study.
Resumo:
Monitoring and visualizing specimens at a large penetration depth is a challenge. At depths of hundreds of microns, several physical effects (such as, scattering, PSF distortion and noise) deteriorate the image quality and prohibit a detailed study of key biological phenomena. In this study, we use a Bessel-like beam in-conjugation with an orthogonal detection system to achieve depth imaging. A Bessel-like penetrating diffractionless beam is generated by engineering the back-aperture of the excitation objective. The proposed excitation scheme allows continuous scanning by simply translating the detection PSF. This type of imaging system is beneficial for obtaining depth information from any desired specimen layer, including nano-particle tracking in thick tissue. As demonstrated by imaging the fluorescent polymer-tagged-CaCO3 particles and yeast cells in a tissue-like gel-matrix, the system offers a penetration depth that extends up to 650 mu m. This achievement will advance the field of fluorescence imaging and deep nano-particle tracking.