931 resultados para Space-time codes (STCs)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main aspects of a discrete phase space formalism are presented and the discrete dynamical bracket, suitable for the description of time evolution in finite-dimensional spaces, is discussed. A set of operator bases is defined in such a way that the Weyl-Wigner formalism is shown to be obtained as a limiting case. In the same form, the Moyal bracket is shown to be the limiting case of the discrete dynamical bracket. The dynamics in quantum discrete phase spaces is shown not to be attained from discretization of the continuous case.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We examine two-component Gross-Pitaevskii equations with nonlinear and linear couplings, assuming self-attraction in one species and self-repulsion in the other, while the nonlinear inter-species coupling is also repulsive. For initial states with the condensate placed in the self-attractive component, a sufficiently strong linear coupling switches the collapse into decay (in the free space). Setting the linear-coupling coefficient to be time-periodic (alternating between positive and negative values, with zero mean value) can make localized states quasi-stable for the parameter ranges considered herein, but they slowly decay. The 2D states can then be completely stabilized by a weak trapping potential. In the case of the high-frequency modulation of the coupling constant, averaged equations are derived, which demonstrate good agreement with numerical solutions of the full equations. (C) 2007 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some dynamical properties of a classical particle confined inside a closed region with an oval-shaped boundary are studied. We have considered both the static and time-dependent boundaries. For the static case, the condition that destroys the invariant spanning curves in the phase space was obtained. For the time-dependent perturbation, two situations were considered: (i) non-dissipative and (ii) dissipative. For the non-dissipative case, our results show that Fermi acceleration is observed. When dissipation, via inelastic collisions, is introduced Fermi acceleration is suppressed. The behaviour of the average velocity for both the dissipative as well as the non-dissipative dynamics is described using the scaling approach. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some dynamical properties for a classical particle confined in an infinitely deep box of potential containing a periodically oscillating square well are studied. The dynamics of the system is described by using a two-dimensional non-linear area-preserving map for the variables energy and time. The phase space is mixed and the chaotic sea is described using scaling arguments. Scaling exponents are obtained as a function of all the control parameters, extending the previous results obtained in the literature. (c) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Some dynamical properties for a dissipative time-dependent oval-shaped billiard are studied. The system is described in terms of a four-dimensional nonlinear mapping. Dissipation is introduced via inelastic collisions of the particle with the boundary, thus implying that the particle has a fractional loss of energy upon collision. The dissipation causes profound modifications in the dynamics of the particle as well as in the phase space of the non-dissipative system. In particular, inelastic collisions can be assumed as an efficient mechanism to suppress Fermi acceleration of the particle. The dissipation also creates attractors in the system, including chaotic. We show that a slightly modification of the intensity of the damping coefficient yields a drastic and sudden destruction of the chaotic attractor, thus leading the system to experience a boundary crisis. We have characterized such a boundary crisis via a collision of the chaotic attractor with its own basin of attraction and confirmed that inelastic collisions do indeed suppress Fermi acceleration in two-dimensional time-dependent billiards. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we compared the estimates of the parameters of ARCH models using a complete Bayesian method and an empirical Bayesian method in which we adopted a non-informative prior distribution and informative prior distribution, respectively. We also considered a reparameterization of those models in order to map the space of the parameters into real space. This procedure permits choosing prior normal distributions for the transformed parameters. The posterior summaries were obtained using Monte Carlo Markov chain methods (MCMC). The methodology was evaluated by considering the Telebras series from the Brazilian financial market. The results show that the two methods are able to adjust ARCH models with different numbers of parameters. The empirical Bayesian method provided a more parsimonious model to the data and better adjustment than the complete Bayesian method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In a previous work, Vieira Neto & Winter (2001) numerically explored the capture times of particles as temporary satellites of Uranus. The study was made in the framework of the spatial, circular, restricted three-body problem. Regions of the initial condition space whose trajectories are apparently stable were determined. The criterion adopted was that the trajectories do not escape from the planet during an integration of 10(5) years. These regions occur for a wide range of orbital initial inclinations (i). In the present work it is studied the reason for the existence of such stable regions. The stability of the planar retrograde trajectories is due to a family of simple periodic orbits and the associated quasi-periodic orbits that oscillate around them. These planar stable orbits had already been studied (Henon 1970; Huang & Innanen 1983). Their results are reviewed using Poincare surface of sections. The stable non-planar retrograde trajectories, 110 degrees less than or equal to i < 180, are found to be tridimensional quasi-periodic orbits around the same family of periodic orbits found for the planar case (i = 180 degrees). It was not found any periodic orbit out of the plane associated to such quasi-periodic orbits. The largest region of stable prograde trajectories occurs at i = 60 degrees. Trajectories in such region are found to behave as quasi-periodic orbits evolving similarly to the stable retrograde trajectories that occurs at i = 120 degrees.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Statement of problem. The accuracy of assessing maxillomandibular relationships for trial bases and dentures using phonetic and swallowing methods has not been compared to that observed with definitive prostheses. Thus, there is no evidence to prove whether measurements obtained through such methods remain the same after adaptation to dentures.Purpose. This study investigated changes in the closest speaking space, interocclusal rest space, and interocclusal distance during deglutition in edentulous patients during and after complete denture treatment.Material and methods. Eighteen edentulous subjects participated in this study and measurements were performed after 7 Intervals of time: (1) with occlusion rims and record bases following creation of the maxillomandibular relationship record, (2) with trial dentures, (3) at Insertion of definitive complete dentures, (4) 1 week, (5) 2 weeks, (6) 1 month, and (7) 3 months after insertion. Recordings of interocclusal distances were made with a mandibular kinesiograph. Closest speaking space was measured during the pronunciation of the word 'seis'. The distance between postural rest position and centric occlusion, or interocclusal rest space, was measured using a kinesiograph. Interocclusal distance during deglutition was tested by recording the closest mandibular position recorded during swallowing of 20 mL of water. Data were analyzed using repeated-measure ANOVA, followed by the Student-Newman-Keuls test (alpha=.05).Results. A significant (P <.01)reduction in the mean closest speaking space was found when it was evaluated using occlusion rims and record bases (4.6 mm) compared with other stages (3.0 to 3.4 mm). No significant differences were found in mean interocclusal rest space and interocclusal distance during deglutition among the time periods evaluated.Conclusions. The presence of occlusion rims can influence mandibular position during pronunciation of the /s/ sound. The arrangement of artificial teeth changes the closest speaking space. However, rest position and deglutition were not affected, either during denture fabrication or short-term use.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The von Neumann-Liouville time evolution equation is represented in a discrete quantum phase space. The mapped Liouville operator and the corresponding Wigner function are explicitly written for the problem of a magnetic moment interacting with a magnetic field and the precessing solution is found. The propagator is also discussed and a time interval operator, associated to a unitary operator which shifts the energy levels in the Zeeman spectrum, is introduced. This operator is associated to the particular dynamical process and is not the continuous parameter describing the time evolution. The pair of unitary operators which shifts the time and energy is shown to obey the Weyl-Schwinger algebra. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigate the escape of an ensemble of noninteracting particles inside an infinite potential box that contains a time-dependent potential well. The dynamics of each particle is described by a two-dimensional nonlinear area-preserving mapping for the variables energy and time, leading to a mixed phase space. The chaotic sea in the phase space surrounds periodic islands and is limited by a set of invariant spanning curves. When a hole is introduced in the energy axis, the histogram of frequency for the escape of particles, which we observe to be scaling invariant, grows rapidly until it reaches a maximum and then decreases toward zero at sufficiently long times. A plot of the survival probability of a particle in the dynamics as function of time is observed to be exponential for short times, reaching a crossover time and turning to a slower-decay regime, due to sticky regions observed in the phase space.