990 resultados para Southwestern of South Atlantic Ocean


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Surface sediment samples representative for the tropical and subtropical South Atlantic (15°N to 40°S) were investigated by isothermal magnetic methods to delineate magnetic mineral distribution patterns and to identify their predominant Holocene climatic and oceanographic controls. Individual parameters reveal distinct, yet frequently overlapping, regional sedimentation characteristics. A probabilistic ('fuzzy c-means') cluster analysis was applied to five concentration independent magnetic properties assessing magnetite to hematite ratios and diagnostic of bulk and fine-particle magnetite grain size and coercivity spectra. The resultant 10 cluster structures establish an oceanwide magnetic sediment classification scheme tracing the major terrigenous eolian and fluvial fluxes, authigenic biogenic magnetite accumulation in high-productivity areas, transport by ocean current systems, and effects of bottom water velocity on depositional regimes. Distinct dissimilarities in magnetic mineral inventories between the eastern and western basins of the South Atlantic reflect prominent contrasts of both oceanic and continental influences.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Information about the first finding of awaruite in oceanic peridotites is given. Petrography of rocks, mineralogy, and minerals associated with awaruite are characterized.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Angola Basin and Walvis Ridge records of past sea surface temperatures (SST) derived from the alkenone Uk 37 index are used to reconstruct the surface circulation in the east equatorial South Atlantic for the last 200,000 years. Comparison of SST estimates from surface sediments between 5° and 20°S with modern SST data suggests that the alkenone temperatures represent annual mean values of the surface mixed layer. Alkenone-derived temperatures for the warm climatic maxima of the Holocene and the penultimate interglacial are 1 to 4°C higher than latest Holocene values. All records show glacial to interglacial differences of about 3.5°C in annual mean SST, which is about 1.5°C greater than the difference estimated by CLIMAP (1981) for the eastern Angola Basin. At the Walvis Ridge, significant SST variance is observed at all of the Earth's orbital periodicities. SST records from the Angola Basin vary predominantly at 23- and 100-kyr periodicities. For the precessional cycle, SST changes at the Walvis Ridge correspond to variations of boreal summer insolation over Africa and lead ice volume changes, suggesting that the east equatorial South Atlantic is sensitive to African monsoon intensity via trade-wind zonality. Angola Basin SST records lag those from the Walvis Ridge and the equatorial Atlantic by about 3 kyr. The comparison of Angola Basin and Walvis Ridge SST records implies that the Angola-Benguela Front (ABF) (currently at about 14-16°S) has remained fairly stationary between 12° and 20°S (the limits of our cores) during the last two glacial-interglacial cycles. The temperature contrast associated with the ABF exhibits a periodic 23-kyr variability which is coherent with changes in boreal summer insolation over Africa. These observations suggest that surface waters north of the present ABF have not directly responded to monsoon-modulated changes in the trade-wind vector, that the central field of zonally directed trades in the southern hemisphere was not shifted or extended northward by several degrees of latitude during glacials, and that a cyclonic gyre circulation has existed in the east equatorial South Atlantic over the last 200,000 years. This scenario contradicts former assumptions of glacial intensification of the Benguela Current into the eastern Angola Basin and increased coastal upwelling off Angola.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Benthonic foraminifera in late Pleistocene deep-sea cores show significant variation in delta 13C with depth in sediment. This, and the report by Sommer et al., (in prep) of delta 13C variations in planktonic foraminifera, indicate that the delta13C in dissolved oceanic CO2 undergoes a significant change in a few thousand years. This is in apparent contradiction to the estimated 300 ka residence time for carbon in the ocean. It is suggested that this is a consequence of changes in the terrestrial plant biomass, which has a delta13C of about -25?. Postulated changes in world vegetation, particularly in tropical rainforests during the Late Pleistocene, were sufficient to produce change of the magnitude observed. Rapid expansions of forests between 13 ka and 8 ka ago may have resulted in the striking accumulation of aragonite pteropods in Atlantic Ocean sediments of the age. Rapid deforestation during an interglacial-glacial transition probably caused the intense carbonate dissolution which is observed in Equatorial Pacific Ocean sediments deposited over this interbal. The current rate of injection of fossil fuel CO2 into the atmosphere is substantially greater than the rate at which it was added during post-interglacial aridification in the tropics.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We present time series of export productivity proxy data including 230Thex-normalized deposition rates (rain rates) of 10Be, dissolution-corrected biogenic Ba, and biogenic opal as well as authigenic U concentrations which are complemented by rain rates of total (detrital) Fe and sea ice indicating diatom abundances from five sediment cores across the Atlantic sector of the Southern Ocean covering the past 150,000 years. The results suggest that 10Be rain rates and authigenic U concentration cannot serve as quantitative paleoproductivity proxies because they have also been influenced by detrital particle fluxes in the case of 10Be and bulk sedimentation rates (sediment focussing) and deep water oxygenation in the case of U. The combined results of the remaining productivity proxies of this study (rain rates of biogenic opal and biogenic Ba in those sections without authigenic U) and other previously published proxy data from the Southern Ocean (231Pa/230Th and nitrogen isotopes) suggest that a combination of sea ice cover, shallow remineralization depth, and stratification of the glacial water column south of the present position of the Antarctic Polar Front and possibly Fe fertilization north of it have been the main controlling factors of export paleoproductivity in the Southern Ocean over the last 150,000 years. An overall glacial increase of export paleoproductivity is not supported by the data, implying that bioproductivity variations in the Southern Ocean are unlikely to have contributed to the major glacial atmospheric CO2 drawdown observed in ice cores.