968 resultados para Solvent Reorganization
Resumo:
The evaluation of the photorelease of a carboxylic acid drug, using butyric acid as a representative model, was carried out by using 7-amino-4-chloromethyl-2-oxo-2Hnaphtho[1,2-b] pyran, an aminobenzocoumarin, and its mono- and di-methylated or ethylated derivatives. This study was intended to improve the release of butyric acid from benzocoumarins by the addition of an amino group to the heterocycle by applying the knowledge of second-generation coumarinylmethyl-based photoremovable protecting groups. Photolysis studies were performed on the resultant ester cages by irradiation in a photochemical reactor at 254, 300, 350 and 419 nm, using methanol/HEPES buffer 80:20 solutions as solvent. The data obtained showed that these new fluorescent aminobenzocoumarins are superior to all the previously tested benzocoumarins with the same or different ring fusions. As well as the photolysis, the photophysics of the compounds were characterised by both steady state and time-resolved methods.
Resumo:
Recently, CdTe semiconductor quantum dots (QDs) have attracted great interest due to their unique properties [1]. Their dispersion into polymeric matrices would be very for several optoelectronics applications. Despite its importance, there has been relatively little work done on charge transport in the QD polymeric films [2], which is mainly affected by their structural and morphological properties. In the present work, polymer-quantum dot nanocomposites films based on optically transparent polymers in the visible spectral range and CdTe QDs with controlled particle size and emission wavelength, were prepared via solvent casting. Photoluminescent (PL) measurements indicate different emission intensity of the nanocomposites. A blue shift of the emission peak compared to that of QDs in solution occurred, which is attributed to the QDs environment changes. The morphological and structural properties of the CdTe nanocomposites were evaluated. Since better QDs dispersion was achieved, PMMA seemed to be the most promising matrix. Electrical properties measurements indicate an ohmic behavior.
Resumo:
Los componentes volátiles presentes en la pulpa de la uva Caimarona se estudiaron mediante GC-MS. Éstos se extrajeron por tres técnicas: evaporación del aroma asistida con solvente (Solvent Assisted Flavour Evaporation SAFE), extracción continua líquido-líquido (LL) y destilación por arrastre con vapor-extracción simultanea con solvente orgánico (DES). En general los componentes volátiles predominantes en la pulpa fueron alcoholes alifáticos y terpénicos. Las notas olfativas del extracto SAFE fueron descritas como floral tenue y verde herbal similares a las exhibidas por la pulpa fresca. Este extracto presentó como componentes mayoritarios linalol 1,2-propanodiol y salicilato de metilo. En contraste, el extracto LL presentó notas que recuerdan la uva pasa y el vino moscatel y sus componentes mayoritarios fueron el ácido acético, el salicilato de metilo y el 2,6-dimetil-2(Z),7-octadien-1,6-diol. El extracto DES fue descrito con notas fresca, floral, cereal y amargo y está constituido por un reducido número de componentes mostrando el efecto negativo de la temperatura en la extracción; sus componentes mayoritarios fueron 1,2-propanodiol, linalol y salicilato de metilo. Adicionalmente, los componentes volátiles mayoritarios liberados por hidrólisis enzimática (Rohapect D5L) de los glicósidos de la pulpa fueron ácido acético, ácido benzoico y vainillina. Cabe destacar que aunque el linalol no se encontró entre las agliconas volátiles, se detectaron los dioles biogenéticamente relacionados: 3,7-dimetil-1,5-octadien-3,7-diol y los isómeros E y Z del 2,6-dimetil-2,7-octadien-1,6-diol.
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado em Engenharia Industrial
Resumo:
Dissertação de mestrado em Engenharia Humana
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado integrado em Engenharia de Materiais
Resumo:
Dissertação de mestrado em Biofísica e Bionanossistemas
Resumo:
New polymer electrolytes (PEs) based on chitosan and three ionic liquid (IL) families ([C2mim][CnSO3], [C2mim][CnSO4] and [C2mim][diCnPO4]) were synthesized by the solvent casting method. The effect of the length of the alkyl chain of the IL anion on the thermal, morphological and electrochemical properties of the PEs was studied. The solid polymer electrolytes (SPE) membranes were analyzed by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersive X-ray (EDX), polarized optical microscopy (POM), atomic force microscopy (AFM), complex impedance spectroscopy (ionic conductivity) and cyclic voltammetry (CV). The obtained results evidenced an influence of the alkyl chain length of the IL anion on the temperature of degradation, birefringence, surface roughness and ionic conductivity of the membranes. The DSC, XRD and CV results showed independency from the length of the IL-anion-alkyl chain. The PEs displayed an predominantly amorphous morphology, a minimum temperature of degradation of 135 °C, a room temperature (T = 25 °C) ionic conductivity of 7.78 × 10−4 S cm−1 and a wide electrochemical window of ∼ 4.0 V.
Resumo:
Polymer electrolytes are currently the focus of much attention as potential electrolytes in electrochemical devices such as batteries, display devices and sensors. Generically, solid polymer electrolytes (SPEs) are mixtures of salts with soft polar polymers. SPEs have many advantages including high energy density, no risk of leakage, no issues related to the presence of solvent, wide electrochemical stability windows, simplified processability and light weight. With the goal of developing a new family of environmentally friendly multifunctional biohybrid materials displaying high ionic conductivity we have produced in the present work, flexible films based on different polymers or hybrids incorporating different salts. The polymer electrolytes studied here have been characterized by means of Differential Scanning Calorimetry, Thermogravimetric Analysis, X-ray diffraction, Polarized Optical Microscopy, complex impedance spectroscopy and cyclic voltammetry. An evaluation of the performance of the sample with the highest conductivity as electrolyte in all solid-state ECDs was performed.
Resumo:
Dissertação de mestrado em Técnicas de Caracterização e Análise Química
Resumo:
Dissertação de mestrado em Administração Pública
Resumo:
A therapeutic deep eutectic system (THEDES) is here defined as a deep eutectic solvent (DES) having an active pharmaceutical ingredient (API) as one of the components. In this work, THEDESs are proposed as enhanced transporters and delivery vehicles for bioactive molecules. THEDESs based on choline chloride (ChCl) or menthol conjugated with three different APIs, namely acetylsalicylic acid (AA), benzoic acid (BA) and phenylacetic acid (PA), were synthesized and characterized for thermal behaviour, structural features, dissolution rate and antibacterial activity. Differential scanning calorimetry and polarized optical microscopy showed that ChCl:PA (1:1), ChCl:AA (1:1), menthol:AA (3:1), menthol:BA (3:1), menthol:PA (2:1) and menthol:PA (3:1) were liquid at room temperature. Dissolution studies in PBS led to increased dissolution rates for the APIs when in the form of THEDES, compared to the API alone. The increase in dissolution rate was particularly noticeable for menthol-based THEDES. Antibacterial activity was assessed using both Gram-positive and Gram-negative model organisms. The results show that all the THEDESs retain the antibacterial activity of the API. Overall, our results highlight the great potential of THEDES as dissolution enhancers in the development of novel and more effective drug delivery systems.
Resumo:
Tese de Doutoramento em Ciências (Especialidade em Química)